This article proposes a mask refinement method for chromosome instance segmentation. The proposed method exploits the knowledge representation capability of Neural Knowledge DNA (NK-DNA) to capture the semantics of the chromosome’s shape, texture, and key points, and then it uses the captured knowledge to improve the accuracy and smoothness of the masks. We validate the method’s effectiveness on our latest high-resolution chromosome image dataset. The experimental results show that our proposed method’s mask average precision (MaskAP) is 3.66% higher than Mask R-CNN and outperforms advanced Cascade Mask R-CNN by 1.35%.
Autorzy
- Ding Chen,
- Haoxi Zhang,
- prof. dr hab. inż. Edward Szczerbicki link otwiera się w nowej karcie
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1080/01969722.2022.2162741
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2024