In this work, we investigate exemplar-free class incremental learning (CIL) with knowledge distillation (KD) as a regularization strategy, aiming to prevent forgetting. KDbased methods are successfully used in CIL, but they often struggle to regularize the model without access to exemplars of the training data from previous tasks. Our analysis reveals that this issue originates from substantial representation shifts in the teacher network when dealing with outof-distribution data. This causes large errors in the KD loss component, leading to performance degradation in CIL models. Inspired by recent test-time adaptation methods, we introduce Teacher Adaptation (TA), a method that concurrently updates the teacher and the main models during incremental training. Our method seamlessly integrates with KD-based CIL approaches and allows for consistent enhancement of their performance across multiple exemplar-free CIL benchmarks. The source code for our method is available at https://github.com/fszatkowski/cl-teacher-adaptation.
Autorzy
- mgr inż Filip Szatkowski,
- mgr inż. Mateusz Pyła,
- mgr inż. Marcin Przewięźlikowski,
- dr inż. Sebastian Cygert link otwiera się w nowej karcie ,
- dr inż. Bartłomiej Twardowski,
- dr hab. inż. Tomasz Trzciński
Informacje dodatkowe
- Kategoria
- Aktywność konferencyjna
- Typ
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język
- angielski
- Rok wydania
- 2024