Modeling nerve cells can facilitate formulating hypotheses about their real behavior and improve understanding of their functioning. In this paper, we study a discrete neuron model introduced by Courbage et al. [Chaos 17, 043109 (2007)], where the originally piecewise linear function defining voltage dynamics is replaced by a cubic polynomial, with an additional parameter responsible for varying the slope. Showing that on a large subset of the multidimensional parameter space, the return map of the voltage dynamics is an expanding Lorenz map, we analyze both chaotic and periodic behavior of the system and describe the complexity of spiking patterns fired by a neuron. This is achieved by using and extending some results from the theory of Lorenz-like and expanding Lorenz mappings.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1063/5.0188464
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2024
Źródło danych: MOSTWiedzy.pl - publikacja "Analysis of dynamics of a map-based neuron model via Lorenz maps" link otwiera się w nowej karcie