The dramatically increasing development of novel biomaterials, their manufacturing techniques, and surface modications, as well as their application in in vivo tests and clinical trials, is evident. It is interesting to note in what a relatively short time the well-known long-term implants have become medical standard: titanium dental implants started in 1965, and total hip arthroplasty (not very successful) was rst attempted in 1961. Even aer about y years of research, real progress can be noticed recently thanks to composite materials and coatings, the development of their fabrication such as 3D printing, and, last but not least, the appearance of sophisticated instruments to characterize surfaces, e.g. atomic force microscopy. For implants and materials for bone repair, the role of an interface between any materials is key. The bulk properties are important to assess the durability of the implant as a whole construct, and the interface dictates the corrosion rate, hydrophilicity and biocompatibility, bioactivity, antibacterial properties, and the lack of cytotoxicity. All these surface properties determine the function and lifetime of long-term implants. And, all of them are modeled at the nano and microscale.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1039/d4ra90035a
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2024