Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Real-Time Sensor-Based Human Activity Recognition for eFitness and eHealth Platforms

Human Activity Recognition (HAR) plays an important role in the automation of various tasks related to activity tracking in such areas as healthcare and eldercare (telerehabilitation, telemonitoring), security, ergonomics, entertainment (fitness, sports promotion, human–computer interaction, video games), and intelligent environments. This paper tackles the problem of real-time recognition and repetition counting of 12 types of exercises performed during athletic workouts. Our approach is based on the deep neural network model fed by the signal from a 9-axis motion sensor (IMU) placed on the chest. The model can be run on mobile platforms (iOS, Android). We discuss design requirements for the system and their impact on data collection protocols. We present architecture based on an encoder pretrained with contrastive learning. Compared to end-to-end training, the presented approach significantly improves the developed model’s quality in terms of accuracy (F1 score, MAPE) and robustness (false-positive rate) during background activity. We make the AIDLAB-HAR dataset publicly available to encourage further research.

Autorzy

Informacje dodatkowe

DOI
Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.3390/s24123891
Kategoria
Publikacja w czasopiśmie
Typ
artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
Język
angielski
Rok wydania
2024

Źródło danych: MOSTWiedzy.pl - publikacja "Real-Time Sensor-Based Human Activity Recognition for eFitness and eHealth Platforms" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie