Local Morse cohomology associates cohomology groups to isolating neighborhoods of gradient flows of Morse functions on (generally non-compact) Riemannian manifolds M. We show that local Morse cohomology is a module over the cohomology of the isolating neighborhood, which allows us to define a cup-length relative to the cohomology of the isolating neighborhood that gives a lower bound on the number of critical points of functions on M that are not necessarily Morse. Finally, we illustrate by an example that this lower bound can indeed be stronger than the lower bound given by the absolute cup-length.
Autorzy
- Thomas O. Rot,
- dr inż. Maciej Starostka link otwiera się w nowej karcie ,
- Nils Waterstraat
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.12775/tmna.2024.002
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
- Język
- angielski
- Rok wydania
- 2024
Źródło danych: MOSTWiedzy.pl - publikacja "The relative cup-length in local Morse cohomology" link otwiera się w nowej karcie