In the global pursuit of sustainable energy and reduced carbon footprints, advances in power generation techniques play a crucial role, not only in meeting the ever-increasing energy demands but also in ensuring that environmental standards are maintained and that the health of our planet is prioritized for future generations. In the ongoing quest for sustainable energy solutions, novel high-speed multi-stage gas-steam turbine models were designed to address the challenge of decarbonized power production. The thermodynamic parameters were adopted on the basis of the negative carbon dioxide gas power plant cycle relying on the following main devices, namely: wet combustion chamber, spray-ejector condenser, sewage sludge gasifier and gas-steam turbine. The peculiarities of the present system make the turbine the link of three important devices and its parameters affect the entire thermodynamic cycle. Therefore, it is reasonable to carry out dedicated novel in literature CFD calculations that also take into account the bleeding of the medium for the gasification process. Two distinct turbine models were introduced: a two-stage turbine achieving speeds of 95 000 rpm with an efficiency of more than 80 %, and a five-stage turbine reaching 40 000 rpm with an efficiency of less than 70 %. A design assumption of a bleed pressure of 100 kPa and a mass flow rate of 0.1 kg/s was adopted for both models. Computational simulations were utilized, and the turbine stages were selected with the aim of reducing energy losses. Through this work, a significant step towards a carbon-negative future using high-speed turbine technologies was demonstrated, laying the groundwork for further advancements in the field.
Autorzy
- dr inż. Paweł Ziółkowski link otwiera się w nowej karcie ,
- Dr inż. Łukasz Witanowski,
- dr inż. Piotr Klonowicz,
- prof. dr hab. inż. Dariusz Mikielewicz link otwiera się w nowej karcie
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1016/j.renene.2024.121655
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2024