Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites

Currently, postulated trends and law regulations tend to direct polymer technology toward sustainability and environmentally friendly solutions. These approaches are expressed by keeping materials in a loop aimed at the circular economy and by reducing the environmental burdens related to the production and use of polymers and polymer-based materials. The application of recycled or waste-based materials often deals efficiently with the first issue but at the expense of the final products’ performance, which requires various additives, often synthetic and petroleum-based, with limited sustainability. Therefore, a significant portion of research is often required to address the drawbacks induced by the application of secondary raw materials. Herein, the presented study aimed to investigate the fire performance of polymer composites containing highly flammable matrix polyurethane (PU) foam and filler ground tire rubber (GTR) originating from car tire recycling. Due to the nature of both phases and potential applications in the construction and building or automotive sectors, the flammability of these composites should be reduced. Nevertheless, this issue has hardly been analyzed in literature and dominantly in our previous works. Herein, the presented work provided the next step and investigated the input of nanoclays to the synergistic flammability reduction in flexible, foamed PU/GTR composites. Hybrid compositions of organophosphorus FRs with expandable graphite (EG) in varying proportions and with the addition of surface-modified nanoclays were examined. Changes in the parameters obtained during cone calorimeter tests were determined, discussed, and evaluated with the fire performance index and flame retardancy index, two parameters whose goal is to quantify the overall fire performance of polymer-based materials.

Autorzy