An exergy analysis is performed on the negative CO2 emission gas power plant (nCO2PP), which integrates the fuel preparation, power generation and carbon capture process sections. The cycle is modeled in Aspen Plus coupled with REFPROP, combining deterministic and Monte Carlo stochastic approaches, the latter being a novelty in this work. In all cases studied, the simulations maintain the complex thermodynamic relationships. Exergy losses with areas of potential improvement are identified, while Monte Carlo simulation in Python generates sewage sludge composition, improving cycle realism. In the deterministic approach, the exergies are calculated for a single sewage sludge composition under ambient air conditions with relative humidity of 40 %, 50 % (base case) and 60 % and CO2 air concentration of 375 ppm, 417 ppm (base case) and 1000 ppm, representing a worst case scenario of CO2 increase until the year 2100. For the deterministic base case nCO2PP, the largest exergy losses are observed in the wet combustion chamber (127 kW, 62 % efficiency), gasification process (43 kW, 89 % efficiency), and water condensation in the gas scrubber (43 kW, 87 % efficiency), while the nCO2PP exergy efficiency, related to the chemical exergy of the sewage sludge, is 33.3 %. Sensitivity analysis on turbine vacuum and spray-ejector condenser suction pressure results in an increase of the nCO2PP efficiency by 0.3 % to 33.6 %. Monte Carlo results are incorporated into the Aspen Plus model after the base case optimization. These yield in a range of nCO2PP exergy efficiencies from 33.6 % to 39.7 % with a mean of 37.5 %.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1016/j.applthermaleng.2024.125312
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2025