Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Treść strony

Question Answering System to Answer Questions About Technical Documentation

This article ventures into the realm of specialized AI systems for question answering, with a specific focus on programming languages, using Rust as the case study. Our research harnesses the capabilities of BERT, a leading model in natural language processing, to explore its effectiveness in interpreting and responding to complex, domain-specific queries. We have developed a novel dataset, derived from Rust's detailed documentation, which surpasses the usual input size for language models. This dataset serves as a foundation for evaluating BERT's performance in a domain-specific context, providing a new resource for testing question-answering systems and shedding light on their strengths and limitations in processing specialized technical information. In this paper, we proposed a solution based on retrieval-reader architecture, the fine-tuned RoBERTa model with the usage of the mentioned dataset, and conducted typical tests for said problem. It is shown, that domain-specific question-answering remains a challenging problem.

Autorzy

Informacje dodatkowe

DOI
Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/978-3-031-70248-8_15
Kategoria
Aktywność konferencyjna
Typ
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język
angielski
Rok wydania
2024

Źródło danych: MOSTWiedzy.pl - publikacja "Question Answering System to Answer Questions About Technical Documentation" link otwiera się w nowej karcie

Portal MOST Wiedzy link otwiera się w nowej karcie