We consider the CHROMATIC SUM PROBLEM on bipartite graphs which appears to be much harder than the classical CHROMATIC NUMBER PROBLEM. We prove that the CHROMATIC SUM PROBLEM is NP-complete on planar bipartite graphs with Delta less than or equal to 5, but polynomial on bipartite graphs with Delta less than or equal to 3, for which we construct an O(n(2))-time algorithm. Hence, we tighten the borderline of intractability for this problem on bipartite graphs with bounded degree, namely: the case Delta = 3 is easy, Delta = 5 is hard. Moreover, we construct a 27/26-approximation algorithm for this problem thus improving the best known approximation ratio of 10/9.
Autorzy
Informacje dodatkowe
- Kategoria
- Aktywność konferencyjna
- Typ
- materiały konferencyjne indeksowane w Web of Science
- Język
- angielski
- Rok wydania
- 2002