The independence number a(H) of a hypergraph H is the maximum cardinality of a set of vertices of H that does not contain an edge of H. Generalizing Shearer’s classical lower bound on the independence number of triangle-free graphs Shearer (1991), and considerably improving recent results of Li and Zang (2006) and Chishti et al. (2014), we show a new lower bound for a(H) for an r-uniform linear triangle-free hypergraph H with r>=2.
Authors
- dr hab. inż. Piotr Borowiecki link open in new tab ,
- Michael Gentner,
- Christian Löwenstein,
- Dieter Rautenbach
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.disc.2016.01.006
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2016