A set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the weakly convex domination number. In this paper we initiate the study of weakly convex domination subdivision number and establish upper bounds for it.
Authors
- dr inż. Magda Dettlaff link open in new tab ,
- Saeed Kosary,
- dr inż. Magdalena Lemańska link open in new tab ,
- Seyed Sheikholeslami
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.2298/fil1608101d
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2016