Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Weakly convex domination subdivision number of a graph

A set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the weakly convex domination number. In this paper we initiate the study of weakly convex domination subdivision number and establish upper bounds for it.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.2298/fil1608101d
Category
Publikacja w czasopiśmie
Type
artykuł w czasopiśmie wyróżnionym w JCR
Language
angielski
Publication year
2016

Source: MOSTWiedzy.pl - publication "Weakly convex domination subdivision number of a graph" link open in new tab

Portal MOST Wiedzy link open in new tab