We have compared the magnetic, transport, galvanomagnetic, and specific-heat properties of CeNiC2, PrNiC2, and NdNiC2 to study the interplay between charge density waves (CDW) and magnetism in these compounds. The negative magnetoresistance in NdNiC2 is discussed in terms of the partial destruction of charge density waves and an irreversible phase transition stabilized by the field-induced ferromagnetic transformation is reported. For PrNiC2 we demonstrate that the magnetic field initially weakens the CDW state, due to the Zeeman splitting of conduction bands. However, the Fermi surface nesting is enhanced at a temperature related to the magnetic anomaly.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1103/physrevb.95.235156
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2017