Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Turán numbers for odd wheels

The Turán number ex(n,G) is the maximum number of edges in any n-vertex graph that does not contain a subgraph isomorphic to G. A wheel W_n is a graph on n vertices obtained from a C_{n−1} by adding one vertex w and making w adjacent to all vertices of the C_{n−1}. We obtain two exact values for small wheels: ex(n,W_5)=\lfloor n^2/4+n/2\rfloor, ex(n,W_7)=\lfloor n^2/4+n/2+1 \rfloor. Given that ex(n,W_6) is already known, this paper completes the spectrum for all wheels up to 7 vertices. In addition, we present the construction which gives us the lower bound ex(n,W_{2k+1})>\lfloor n^2/4 \rfloor + \lfloor n/2 \rfloor in general case.

Authors

Additional information

DOI
Digital Object Identifier link open in new tab 10.1016/j.disc.2017.10.003
Category
Publikacja w czasopiśmie
Type
artykuł w czasopiśmie wyróżnionym w JCR
Language
angielski
Publication year
2018

Source: MOSTWiedzy.pl - publication "Turán numbers for odd wheels" link open in new tab

Portal MOST Wiedzy link open in new tab