Let S^2 be a two-dimensional sphere. We consider two types of its foliations with one singularity and maps f:S^2→S^2 preserving these foliations, more and less regular. We prove that in both cases f has at least |deg(f)| fixed points, where deg(f) is a topological degree of f. In particular, the lower growth rate of the number of fixed points of the iterations of f is at least log|deg(f)|. This confirms the Shub’s conjecture in these classes of maps.
Authors
- prof. dr hab. Grzegorz Graff link open in new tab ,
- Michał Misiurewicz link open in new tab ,
- Piotr Nowak-Przygodzki
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1007/s12346-018-0298-8
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2019