Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

The Effect of AgInS2, SnS, CuS2, Bi2S3 Quantum Dots on the Surface Properties and Photocatalytic Activity of QDs-Sensitized TiO2 Composite

The eect of type (AgInS2, SnS, CuS2, Bi2S3) and amount (5, 10, 15 wt%) of quantum dots (QDs) on the surface properties and photocatalytic activity of QDs-sensitized TiO2 composite, was investigated. AgInS2, SnS, CuS2, Bi2S3 QDs were obtained by hot-injection, sonochemical, microwave, and hot-injection method, respectively. To characterize of as-prepared samples high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diraction (XRD), UV-Vis spectroscopy and photoluminescence (PL) emission spectroscopy were applied. The size of AgInS2, SnS, CuS2, Bi2S3 QDs were 12; 2–6; 2–3, and 1–2 nm, respectively. The QDs and QDs-sensitized TiO2 composites obtained have been tested in toluene degradation under LEDs light irradiation (max = 415 nm and max = 375 nm). For pristine QDs the eciency of toluene degradation increased in the order of AgInS2 < Bi2S3 < CuS < SnS under 375 nm and AgInS2 < CuS < Bi2S3 < SnS under 415 nm. In the presence of TiO2/SnS QDs_15% composite, 91% of toluene was degraded after 1 h of irradiation, and this eciency was about 12 higher than that for pristine QDs under 375 nm. Generally, building the TiO2/AgInS2 and TiO2/SnS exhibited higher photoactivity under 375 nm than the pristine TiO2 and QDs which suggests a synergistic eect between QDs and TiO2 matrix.

Authors