Consider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient mappings
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.3390/math8081262
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2020