Do propagacji pęknięć wykorzystano nowy oparty na DEM, termiczno-hydromechaniczny model dwufazowego przepływu płynu w skali porów rozszerzony o wymianę ciepła w nienasyconych materiałach porowatych o małej porowatości. Wykonano obliczenia numeryczne dla kohezyjnych próbek ziarnistych przy użyciu DEM w pełni sprzężonego z CFD (opartego na sieci przepływu płynu) i wymianą ciepła, który zintegrował mechanikę dyskretną z mechaniką płynów i wymianą ciepła w mezoskali. Zarówno płyn (dyfuzja i adwekcja) i kohezyjne cząstki (przewodnictwo) brały udział w przenoszeniu ciepła. Wyniki stosując sprzężony model termo-hydro-mechaniczny (THM) zostały najpierw porównane z rozwiązaniem analitycznym klasycznego jednowymiarowego transportu ciepła. Wyniki liczbowe i analityczne były w pełni zgodne. Wpływ adwekcji na ochłodzenie na zespół kohezyjnych cząstek został następnie zademonstrowany numerycznie dla niskich i wysokich liczb Pecleta. Wreszcie użyteczność modelu THM została udowodniona w teście skurczu termicznego, w którym zastosowano próbkę złożoną z kohezyjnych cząstek był poddany chłodzeniu, w wyniku czego powstało makropęknięcie. Zbadano wpływ makropęknięcia na rozkład ciśnienia płynu, gęstości, prędkości i temperatury.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1007/s11440-022-01746-8
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2023