Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Wire Arc Additive Manufactured Mild Steel and Austenitic Stainless Steel Components: Microstructure, Mechanical Properties and Residual Stresses

Wire arc additive manufacturing (WAAM) is an additive manufacturing process based on the arc welding process in which wire is melted by an electric arc and deposited layer by layer. Due to the cost and rate benefits over powder-based additive manufacturing technologies and other alternative heat sources such as laser and electron beams, the process is currently receiving much attention in the industrial production sector. The gas metal arc welded (GMAW) based WAAM process provides a higher deposition rate than other methods, making it suitable for additive manufacturing. The fabrication of mild steel (G3Si1), austenitic stainless steel (SS304), and a bimetallic sample of both materials were completed successfully using the GMAW based WAAM process. The microstructure characterization of the developed sample was conducted using optical and scanning electron microscopes. The interface reveals two discrete zones of mild steel and SS304 deposits without any weld defects. The hardness profile indicates a drastic increase in hardness near the interface, which is attributed to chromium migration from the SS304. The toughness of the sample was tested based on the Charpy Impact (ASTM D6110) test. The test reveals isotropy in both directions. The tensile strength of samples deposited by the WAAM technique measured slightly higher than the standard values of weld filament. The deep hole drilling (DHD) method was used to measure the residual stresses, and it was determined that the stresses are compressive in the mild steel portion and tensile in austenitic stainless steel portion, and that they vary throughout the thickness due to variation in the cooling rate at the inner and outer surfaces.

Authors