Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Treść strony

Algebraic periods and minimal number of periodic points for smooth self-maps of 1-connected 4-manifolds with definite intersection forms

Let M be a closed 1-connected smooth 4-manifolds, and let r be a non-negative integer. We study the problem of finding minimal number of r-periodic points in the smooth homotopy class of a given map f: M-->M. This task is related to determining a topological invariant D^4_r[f], defined in Graff and Jezierski (Forum Math 21(3):491–509, 2009), expressed in terms of Lefschetz numbers of iterations and local fixed point indices of iterations. Previously, the invariant was computed for self-maps of some 3-manifolds. In this paper, we compute the invariants D^4_r[f] for the self-maps of closed 1-connected smooth 4-manifolds with definite intersection forms (i.e., connected sums of complex projective planes). We also present some efficient algorithmic approach to investigate that problem.

Authors