In this paper we prove the existence of mountain pass periodic solutions of a certain class of generalized Lagrangian systems under small perturbations. We show that the found periodic solutions converge to a periodic solution of the unperturbed system if the perturbation tends to 0. The proof requires to work in a rather unusual (mixed) Orlicz–Sobolev space setting, which bears several challenges.
Authors
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1142/s0219199724500317
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
- Language
- angielski
- Publication year
- 2024