The representation problem is to prove that a discretization in space of the Fourier transform of a diffusion equation with a constant diffusion coefficient can be realized explicitly by an infinite fractal R-L ladder networks. We prove a rigidity theorem: a solution to the representation problem exists if and only if the space discretization is a geometric space scale and the fractal ladder networks is a Oustaloup one. In this case, the resistance and inertance of the ladder are explicitly determined up to a constant.
Authors
- Jacky Cresson,
- dr inż. Anna Szafrańska link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.30546/2409-4994.2024.50.1.115
- Category
- Publikacja w czasopiśmie
- Type
- artykuły w czasopismach
- Language
- angielski
- Publication year
- 2024