This work demonstrates the suitability of a newly developed ionic liquid (IL)-based silica SPME fiber for the determination of seven organophosphorus insecticides in cucumber and grapefruit samples by headspace solid-phase microextraction (HS-SPME) with a gas chromatography–flame ionization detector (FID). The sol-gel method released four different sorbent coatings, which were obtained based on a silica matrix containing ILs immobilized inside its pores. In order to obtain ionogel fibers, the following ionic liquids were utilized: 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide; Butyltriethyl ammonium bis(trifluoromethylsulfonyl)imide; 1-(2-Methoxyethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-Benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The developed fibers were applied for the extraction of seven different insecticides from liquid samples. The most important extraction parameters of HS-SPME coupled with the GC-FID method were optimized with a central composite design. The new SPME fiber demonstrated higher selectivity for extracting the analyzed insecticides compared with commercially available fibers. The limit of detection was in the range of 0.01–0.93 μg L−1, the coefficients of determination were >0.9830, and 4.8–10.1% repeatability of the method was found. Finally, the obtained ionogel fibers were utilized to determine insecticides in fresh cucumber and grapefruit juices.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.3390/molecules27154688
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2022