We discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the micropolar elasticity, the model is called Cosserat pseudocontinuum or medium with constrained rotations. Applying the classic definitions of ordinary ellipticity and strong ellipticity to static equations of the couple-stress theory, we conclude that these equations are neither elliptic nor strongly elliptic. As a result, one should be aware of extending properties of full strain gradient models such as Toupin–Mindlin strain gradient elasticity to models with incomplete set of second derivatives.
Autorzy
Informacje dodatkowe
- DOI
- Cyfrowy identyfikator dokumentu elektronicznego link otwiera się w nowej karcie 10.1007/s00033-022-01913-7
- Kategoria
- Publikacja w czasopiśmie
- Typ
- artykuły w czasopismach
- Język
- angielski
- Rok wydania
- 2023
Źródło danych: MOSTWiedzy.pl - publikacja "Ellipticity in couple-stress elasticity" link otwiera się w nowej karcie