In recent years, increasingly complex algorithms for automated analysis of surveillance data are being developed. The rapid growth in the number of monitoring installations and higher expectations of the quality parameters of the captured data result in an enormous computational cost of analyzing the massive volume of data. In this paper a new model of online processing of surveillance data streams is proposed, which assumes the use of services running within a supercomputer platform. The study presents some of the highly parallelized algorithms for detecting safety-threatening events in high-resolution- video streams, which were developed during the research, and discusses their performance on the supercomputer platform.
Authors
- prof. dr hab. inż. Andrzej Czyżewski link open in new tab ,
- mgr inż. Piotr Bratoszewski link open in new tab ,
- mgr inż. Andrzej Ciarkowski link open in new tab ,
- mgr inż. Janusz Cichowski link open in new tab ,
- mgr inż. Karol Lisowski link open in new tab ,
- dr inż. Maciej Szczodrak link open in new tab ,
- dr hab. inż. Grzegorz Szwoch link open in new tab ,
- prof. dr hab. inż. Henryk Krawczyk link open in new tab
Additional information
- DOI
- Digital Object Identifier link open in new tab 10.1016/j.ins.2014.11.013
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2015