W niniejszej pracy badamy istnienie orbit homoklinicznych dlaukładu Hamiltonowskiego drugiego rzędu: q^{..} + V_{q}(t,q) = f(t), gdzie V z iloczynu kartezjańskiego R x R^{n} do R jest postaciV(t,q) = -K(t,q) + W(t,q). Zakładamy, ze V jest T-okresowe ze względuna zmienną t, K spełnia tzw. ''pinching'' warunek, W jest superliniowew nieskończoności, a norma f w L^{2} jest wystarczająco mała.Orbitę homokliniczną takiego układu znajdujemy jako granicę ciągu2kT-okresowych rozwiązań pewnego ciągu równań różniczkowych drugiegorzędu.
Authors
Additional information
- Category
- Publikacja w czasopiśmie
- Type
- artykuł w czasopiśmie wyróżnionym w JCR
- Language
- angielski
- Publication year
- 2005