Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Publications from the year 2024

Show all
  • A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
    • Hammed Mojeed
    • Rafał Szłapczyński
    2024 Full text

    Overtime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions annotated by project managers and applied to four publicly available software development projects. The model was trained using 1092 instances of annotated solutions gathered from software houses, and the Random Forest Regression (RFR) algorithm was used to estimate the PMs' preference. The evaluation results using MAE, RMSE, and R2 revealed that RFR exhibits excellent predictive power in this domain with minimal error. RFR also outperformed the baseline regression models in all the performance measures. The proposed machine learning approach provides a reliable and effective tool for estimating project managers' preferences for overtime plans.


  • A machine learning approach to classifying New York Heart Association (NYHA) heart failure
    • Krystian Jandy
    • Paweł Weichbroth
    2024 Full text Scientific Reports

    According to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional Classification. Each NYHA class describes a patient’s symptoms while performing physical activities, delivering a strong indicator of the heart performance. In each case, a NYHA class is individually determined routinely based on the subjective assessment of the treating physician. However, such diagnosis can suffer from bias, eventually affecting a valid assessment. To tackle this issue, we take advantage of the machine learning approach to develop a decision-tree, along with a set of decision rules, which can serve as additional blinded investigator tool to make unbiased assessment. On a dataset containing 434 observations, the supervised learning approach was initially employed to train a Decision Tree model. In the subsequent phase, ensemble learning techniques were utilized to develop both the Voting Classifier and the Random Forest model. The performance of all models was assessed using 10-fold cross-validation with stratification.The Decision Tree, Random Forest, and Voting Classifier models reported accuracies of 76.28%, 96.77%, and 99.54% respectively. The Voting Classifier led in classifying NYHA I and III with 98.7% and 100% accuracy. Both Random Forest and Voting Classifier flawlessly classified NYHA II at 100%. However, for NYHA IV, Random Forest achieved a perfect score, while the Voting Classifier reported 90%. The Decision Tree showed the least effectiveness among all the models tested. In our opinion, the results seem satisfactory in terms of their supporting role in clinical practice. In particular, the use of a machine learning tool could reduce or even eliminate the bias in the physician’s assessment. In addition, future research should consider testing other variables in different datasets to gain a better understanding of the significant factors affecting heart failure.


  • A magnetic imprinted polymer nano-adsorbent with embedded quantum dots and mesoporous carbon for the microextraction of triazine herbicides
    • Nurhasima Phirisi
    • Justyna Płotka-Wasylka
    • Opas Bunkoed
    2024 JOURNAL OF CHROMATOGRAPHY A

    A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@NGQDs@ Fe3O4–NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 μg L 1 with a detection limit of 0.5 μg L 1. Recoveries from spiked fruit juice samples were in the range of 80.1– 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.


  • A magnetic stir bar sorbent of metal organic frameworks, carbon foam decorated zinc oxide and cryogel to enrich and extract parabens and bisphenols from food samples
    • Sirintorn Jullakan
    • Natnaree Rattanakunsong
    • Justyna Płotka-Wasylka
    • Opas Bunkoed
    2024 JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES

    A porous composite magnetic stir bar adsorbent was fabricated for the extraction and enrichment of parabens and bisphenols from selected beverage samples. The adsorbent comprised a metal organic framework, carbon foam decorated zinc oxide and magnetic nanoparticles embedded in polyvinyl alcohol cryogel. The porous composite stir bar adsorbent could adsorb parabens and bisphenols via hydrogen bonding, π-π and hydrophobic interactions. In the best conditions, linearity was good from 5.0 to 200.0 µg/L for methyl paraben, ethyl paraben and bisphenol A and from 10.0 to 200.0 µg/L for bisphenol B and butyl paraben. Limits of detection ranged from 1.5 to 3.0 µg/L. The developed composite stir bar was successfully applied to extract and determine parabens and bisphenols in fruit juice, beer and milk. Recoveries ranged from 89.5 to 99.5 % with RSDs lower than 6 %. The developed sorbent and new methodology were evaluated in terms of its green character with satisfactory results.


  • A method to synthesise groove cam Geneva mechanisms with increased dwell period
    • Viacheslav Pasika
    • Pavlo Nosko
    • Oleksii Nosko
    • Oleksandr Bashta
    • Volodymyr Heletiy
    • Volodymyr Melnyk
    2024 Full text PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE

    The present study develops a method to synthesise the groove cam Geneva mechanism with increased dwell period. The main condition of the synthesis is to provide the desired law of motion of the wheel. Additional synthesis conditions are the limitation of the maximum pressure angle and the limitation of the minimum curvature radius of the cam profile. Unlike the conventional Geneva mechanisms, the synthesised groove cam Geneva mechanisms enable motion of the wheel due to an arbitrarily specified law, double locking of the wheel at its dwell-to-motion and motion-to-dwell transitions, absence of soft impacts in the extreme positions. The analysis shows that for the cycloidal law of motion, number of slots in range 3 to 15 and additional dwell coefficient in range 0 to 0.7, the operating time coefficient can be provided in wide range from 0.053 to 0.765. The effectiveness of the method is illustrated by numerical examples.


  • A methodology for ultimate strength assessment of ship hull girder accounting for enhanced corrosion degradation modelling
    • Krzysztof Wołoszyk
    • Floris Goerlandt
    • Jakub Montewka
    2024 MARINE STRUCTURES

    The presented work shows a methodology for the ultimate strength assessment of a ship hull, considering enhanced corrosion modelling. The approach is based on the classical Smith method. However, the recent findings regarding the impact of corrosion degradation on ultimate strength are incorporated. To this end, the stress–strain relationships for particular elements composing ship hull cross-section are modified using a specially developed correction factor. The proposed approach is validated with experimental results of the corroded box girders available in the literature, showing very good agreement. Further, a case study of a VLCC tanker ship is presented, and a comparison between contemporary and enhanced corrosion degradation modelling in terms of resulting ultimate strength is presented. The results indicate that the currently used method may significantly overestimate the hull’s structure capacity, especially considering the long exploitation period. Thus, current approaches lead to a non-conservative assessment of the ship hull girder’s ultimate strength, potentially increasing the risk of failure. It is therefore recommended to further investigate the proposed method, especially in the context of risk-based ship design approaches and holistic maritime transportation risk management.


  • A model for agribusiness supply chain risk management using fuzzy logic. Case study: Grain route from Ukraine to Poland
    • Ievgen Medvediev
    • Dmitriy Muzylyov
    • Jakub Montewka
    2024 Full text TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW

    In order to establish new logistics routes, it is necessary to address several technical and organizational issues, among others. One of the most important criteria for evaluating the performance of a supply chain is the delivery time, proactive consideration of potential hazards and associated uncertainties that may occur along the route. However, the existing solutions are often passive and reactive, based on statistics, thus not leaving much room for proactive risk mitigation measures. Therefore, there is a need for a foreseeing modern approach to account for the impact of anticipated hazards on delivery time. The aim of this study is to develop a model for determining delivery time considering expected risk factors (RF), based on mathematical tools of fuzzy logic and actual background knowledge elicited from the literature and experts. The paper identifies primary technical and operational hazards that occur during loading and transport and converts them into risk factors. The risk factors are then quantified and fed into a fuzzy model developed with the Matlab Fuzzy Logic Toolbox and assembled in the Simulink environment. The application of the model is demonstrated in three case studies reflecting three potential grain supply chains (SC) from Ukraine to Poland: classical transport by rail grain hoppers (SC1); transport by containers on railway platforms (SC2); transport by bulk grain trucks (SC3). The resulting travel time for the analysed SCs is between 49 and 71 hours for SC1, between 45 and 62 hours for SC2 and between 42 and 62 hours for SC3. In addition, the outliers of the travel time values beyond the 1.5 quantiles were defined according to the uncertainty band. The results of the fuzzy model were compared with the results of the deterministic approach in the concurrent validation and a good agreement was found. This proves the appropriateness of the fuzzy model calculations and the possibility of using alternative SCs in grain delivery. The main benefit of the proposed model is a new universal tool based on a holistic and active approach to risk assessment using fuzzy logic.


  • A multiparameter simulation-driven analysis of ship response when turning concerning a required number of irregular wave realizations
    • Przemysław Krata
    • Mateusz Gil
    • Tomasz Hinz
    • Paweł Kozioł
    2024 OCEAN ENGINEERING

    The growing implementation of Decision Support Systems on modern ships, digital-twin technology, and the introduction of autonomous vessels cause the marine industry to seek accurate modeling of vessel response. Despite the contemporary 6DOF models can be used to predict ship motions in irregular waves, the impact of their stochastic realization is usually neglected and remains under-investigated. Especially in the case of turning, differences arising from the stochastic representation of the waves may result in excessive ship motions or even stability failure during maneuver execution. Therefore, in this study, statistical distributions of maximum amplitudes of roll, pitch, and lateral acceleration calculated in two representative locations on board a passenger vessel were analyzed concerning stochastic wave realization and existing extremes. The research utilized 6DOF simulation data and numerous realizations of the irregular wave with random phases of its components. Furthermore, the required number of wave realizations allowing for capturing the actual ranges of ship response at an assumed confidence level has been determined and analyzed. Ultimately, the results were compared in the safety-critical cases concerning various wave and operational conditions. The outcome of this study may be found useful by all parties involved in developing maritime autonomous systems and modeling ship motions.


  • A multiparameter simulation-driven analysis of ship turning trajectory concerning a required number of irregular wave realizations
    • Mateusz Gil
    • Przemysław Krata
    • Paweł Kozioł
    • Tomasz Hinz
    2024 OCEAN ENGINEERING

    In times of progressive automation of the marine industry, accurate modeling of ship maneuvers is of utmost importance to all parties involved in maritime transportation. Despite the existence of modern collisionavoidance algorithms using 6DOF motion models to predict ship trajectories in waves, the impact of stochastic realization of irregular waves is usually neglected and remains under-investigated. Therefore, herein, this phenomenon and its impact were investigated in the case study of the passenger ship’s turning. To this end, statistical and spatiotemporal distributions of ship positions and corresponding trajectory parameters were analyzed. This was made using massive 6DOF simulation data with particular attention to the observed extremes. Additionally, the minimum number of wave realizations has been determined using different methods in various simulation scenarios and afterward compared concerning parameters’ impact and existing dependencies. The results indicate that for simulated scenarios, the required number of wave realizations should be at least 20, but in rough seas should be greater than 30. These values satisfy an acceptable and operationally reasonable error limit reaching 15% of the ship’s length overall. The obtained results may be of interest to autonomous ship developers, scholars, and marine industry representatives working on intelligent collision-avoidance solutions and ship maneuvering models.


  • A New Approach of Solidification Analysis in Modular Latent Thermal Energy Storage Unit Based on Image Processing
    • Rafał Andrzejczyk
    • Muhammad Saqib
    • Michał Rogowski
    2024 Full text APPLIED THERMAL ENGINEERING

    The solidification process of RT18HC in a cylindrical shell and tube storage unit has been studied using a new methodology based on image processing. The main idea of the algorithm is to label the region of solidification and use statistical functions to calculate the dimensions of the solidification front over time. Said analysis includes two methods. The first method is to measure the solid fraction changes during solidification. The novelty of this method, as compared to other literature findings, is that pre-processing and calculation process occurs automatically via a calculation algorithm. This method is used to calculate the solid fraction of RT18HC which is reported to be a bit fast at the beginning that 40 % of its volume solidified in 1000 s while the rest of the process is completed in almost 6500 s. The second method is used to measure and calculate the thickness of the solid front by using image processing. This method’s error is calculated to be less than 7% throughout the entire process. The second method also acts as an experimental database of front thickness to use in a novel, simplified, semi-theoretical model proposed to calculate the solid front thickness as a function of time in this paper. It is also worth presenting solution extended by a general definition of thermal resistance for a cylindrical partition. The above study will enable the development of an enhanced and optimized model for complex geometries based on image processing techniques in the future. It will also allow the investigation of both processes i.e. solidification and melting alongside other influencing parameters such as the geometry of the storage unit in future.


  • A new strategy for PET depolymerization: Application of bimetallic MOF-74 as a selective catalyst
    • Mateusz Baluk
    • Patrycja Jutrzenka Trzebiatowska
    • Aleksandra Pieczyńska
    • Damian Makowski
    • Malwina Kroczewska
    • Justyna Łuczak
    • Adriana Zaleska-Medynska
    2024 JOURNAL OF ENVIRONMENTAL MANAGEMENT

    Large-volume production of poly(ethylene terephthalate) (PET), especially in the form of bottles and food packaging containers, causes problems with polymer waste management. Waste PET could be recycled thermally, mechanically or chemically and the last method allows to obtain individual monomers, but most often it is carried out in the presence of homogeneous catalysts, that are difficult to separate and reuse. In view of this, this work reports for the first time, application of bimetallic MOF-74 – as heterogeneous catalyst - for depolymerization of PET with high monomer bishydroxyethyl terephthalate, BHET) recovery. The effect of type and amount of second metal in the MOF-74 (Mg/M) was systematically investigated. The results showed increased activity of MOF-74 (Mg/M) containing Co2+, Zn2+ and Mn2+ as a second metal, while the opposite correlation was observed for Cu2+ and Ni2+. It was found that the highest catalytic activity was demonstrated by the introduction of Mg–Mn into MOF-74 with ratio molar 1:1, which resulted in complete depolymerization of PET and 91.8% BHET yield within 4 h. Furthermore, the obtained catalyst showed good stability in 5 reaction cycles and allowed to achieve high-purity BHET, which was confirmed by HPLC analysis. The as-prepared MOF-74 (Mg/Mn) was easy to separate from the post-reaction mixture, clean and reuse in the next depolymerization reaction.


  • A note on the Morse homology for a class of functionals in Banach spaces involving the 2p-area functional
    • Luca Asselle
    • Maciej Starostka
    2024 NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS

    In this paper we show how to construct Morse homology for an explicit class of functionals involving the 2p-area functional. The natural domain of definition of such functionals is the Banach space W_0^{1,2p}(\Omega), where p > n/2 and \Omega \subet R^n is a bounded domain with sufficiently smooth boundary. As W_0^{1,2p}(\Omega) is not isomorphic to its dual space,critical points of such functionals cannot be non-degenerate in the usual sense, and hence in the construction of Morse homology we only require that the second differential at each critical point be injective. Our result upgrades, in the case p > n/2 , the results in Cingolani and Vannella (Ann Inst H Poincaré Anal Non Linéaire 2:271–292, 2003; Ann Mat Pura Appl 186:155–183, 2007), where critical groups for an analogous class of functionals are computed, and provides in this special case a positive answer to Smale’s suggestion that injectivity of the second differential should be enough for Morse theory


  • A Novel Device and System for Fall Detection Under the Shower
    • Adam Bujnowski
    • Bartłomiej Rajzer
    • Aleksey Andrushevich
    • Artur Poliński
    • Mariusz Kaczmarek
    • Jerzy Wtorek
    2024

    In this paper, device construction and preliminary results for shower safety assistance are presented. The device allows monitoring of shower-taking persons without violating privacy and intimacy, while it has the ability to detect a persons entering and leaving the shower and detecting fall conditions. It allows better supervision of elders living independently at their locations.


  • A Novel Iterative Decoding for Iterated Codes Using Classical and Convolutional Neural Networks
    • Marek Blok
    • Bartosz Czaplewski
    2024

    Forward error correction is crucial for communication, enabling error rate or required SNR reduction. Longer codes improve correction ratio. Iterated codes offer a solution for constructing long codeswith a simple coder and decoder. However, a basic iterative code decoder cannot fully exploit the code’s potential, as some error patterns within its correction capacity remain uncorrected.We propose two neural network-assisted decoders: one based on a classical neural network, and the second employing a convolutional neural network. Based on conducted research, we proposed an iterative neural network-based decoder. The resulting decoder demonstrated significantly improved overall performance, exceeding that of the classical decoder, proving the efficient application of neural networks in iterative code decoding.


  • A Numerical Model Study on Grasse River Ice Control Structures
    • Tomasz Kolerski
    • Hung Tao Shen
    2024 Full text CANADIAN JOURNAL OF CIVIL ENGINEERING

    Ice jams in the Grasse River have caused the erosion of capping material designed to prevent the resurfacing of the bed sediment in the PCB-contaminated area. Two in-stream ice-control structures are proposed to avoid the jam-induced erosion of the capping material. These two ice-control options are a pier-type ice-control structure and a reconstruction of a small hydropower dam upstream of the capping site. A numerical model study using the DynaRICE model is conducted to evaluate the effectiveness of the proposed design. Flow and ice conditions corresponding to the 100-year return period of ice jam events obtained from analyzing historical breakup ice jam data are used in the evaluation. The results showed that these ice-control structures could reduce the ice discharge downstream and the size of the ice jam at the capping site to prevent the erosion and scour of the PCB-contaminated bed.


  • A palatal prosthesis from archaeological research in the St Francis of Assisi church in Cracow (Poland)
    • Anna E. Spinek
    • Marta Kurek
    • Krzysztof Demidziuk
    • Marcin Nowak
    • Magdalena Śliwka-Kaszyńska
    • Anna Drążkowska
    2024 Journal of Archaeological Science-Reports

    The hard palate is a septum that not only prevents food from entering between the oral and nasal cavity, but also plays an important role during breathing or speech. The presence of cavities within it negatively affects the comfort of life of people with this type of impairment. Hence, in the literature one can find examples of the use of hard palate prostheses to restore the separation between the nasal and oral cavity. During archaeological research conducted in 2017–18 in the church of St Francis of Assisi in Cracow, the remains of a man with a cleft palate, who died at the age of about 50, were found. His burial is dated to the eighteenth century. Within his mouth, the presence of a palatal prosthesis was noted. This is the first case in Poland of finding an individual with an obturator tailored to its needs. The aim of the work is to present the structure and elemental composition of the found prosthesis and comparisons to the other obturators known from written sources. Macroscopic analysis showed the presence of an elliptical-shaped metal diaphragm and a textile “tampon” entering nasal cavity. The metal part of the prosthesis was made of copper alloy, covered with a layer of silver and gold. The comparison of the analysed obturator with examples from the literature indicates its great similarity to those used in the sixteenth and eighteenth centuries.


  • A Planar-Structured Circularly Polarized Single-Layer MIMO Antenna for Wideband Millimetre-Wave Applications
    • Ubaid Ullah
    • Sławomir Kozieł
    • Anna Pietrenko-Dąbrowska
    • Shahanawaz Kamal
    2024 Full text Engineering Science and Technology-An International Journal-JESTECH

    In this paper, a simple geometry, planar-structured printed multiple-input-multiple-output (MIMO) antenna utilizing dual circular polarization (CP) is presented. The proposed numerically and experimentally validated design features a fully grounded coplanar waveguide (CPW) and a systematically perturbed feedline radiator. The fringing electric (E) field along the feedline is altered by extruding periodic stubs on each side of the microstrip line extended from a grounded CPW. The different physical size of the stubs on each side, plus a slight offset introduced between the stubs breaks the symmetry of the vector E-fields on both side of the edges. The asymmetric E-field weakens the intensity of the respective magnetic current on the opposite side for a wider spectrum, resulting in a wideband operation. The asymmetric vertical magnetic current along the length of the stubs and the combined current on the horizontal edges yield 90-degree out-of-phase orthogonal field components, radiating circularly polarized waves. The proposed design has the advantage of topological simplicity and ease of polarization sense alteration. Owing to this, the design is implemented in MIMO configuration with each port radiating a different sense of CP. The antenna's simulated and measured -10 dB impedance bandwidth is more than 26.5% ranging from 24.6 GHz to 32.1 GHz frequency. Additionally, the antenna retains an axial ratio (AR) of 3 dB or less from 26 GHz to 31.8 GHz. The peak realized gain (RG) of the antenna is 10.3 dBic with an average value of ~ 9.5 dBic across the bandwidth confirming stable radiation in the broadside direction. At the same time, the envelop correlation coefficient and the diversity gain are about 0.01 and 10 dB, respectively over the operating band.


  • A probabilistic-driven framework for enhanced corrosion estimation of ship structural components
    • Krzysztof Wołoszyk
    • Yordan Garbatov
    2024 Full text RELIABILITY ENGINEERING & SYSTEM SAFETY

    The work proposes a probabilistic-driven framework for enhanced corrosion estimation of ship structural components using Bayesian inference and limited measurement data. The new approach for modelling measurement uncertainty is proposed based on the results of previous corrosion tests that incorporate the non-uniform character of the corroded surface of structural components. The proposed framework's basic features are outlined, and the detailed algorithm is presented. Further, the proposed framework is validated by comparison with the classical statistical approach and mass measurements, considering previous experimental work results. Notably, the impact of the number of measuring points is investigated, and the accuracy index is proposed to identify the optimum number of measurements. The developed framework has a significant advantage over the classical approach since measuring uncertainty is incorporated. Additionally, the confidence intervals of both mean value corrosion depth and standard deviation could be gathered due to the probabilistic character of the framework. Thus, the presented approach can potentially be used in the structural health monitoring of ship structural components and reliability analysis.


  • A procedure for the identification of effective mechanical parameters of additively manufactured elements using integrated ultrasonic bulk and guided waves
    • Erwin Wojtczak
    • Magdalena Rucka
    • Angela Andrzejewska
    2024 MEASUREMENT

    The subject of the current work was a simple but robust novel two-stage procedure for the non-destructive determination of effective elastic constants using ultrasonic wave propagation. First, ultrasonic bulk wave velocities measured on cubic samples were used to calculate most of the elements of the stiffness matrix. Secondly, the remaining elements were determined using the dispersion curves of elastic guided waves measured on plate samples. Based on the complete stiffness matrix it was possible to calculate the complete set of effective elastic constants. The algorithm was verified for AM elements produced from PLA filament satisfying the conditions of transversely isotropic and orthotropic material models. For the transversely isotropic samples, Young’s moduli (E) varied from 2.6 to 2.9 GPa, shear moduli (G) equalled between 0.9 and 1.2 GPa, whereas Poisson’s ratios (ν) ranged between 0.20 and 0.32. In orthotropic sample the corresponding values were: E = 1.3–2.8 GPa, G = 0.6–1.2 GPa, and ν = 0.07–0.59. The results of the current study have been compared with references from the literature, giving satisfactory agreement.


  • A prototype information system for managing and pricing e-waste
    • Krystian Jandy
    • Paweł Weichbroth
    2024 Full text

    There is no doubt that innovation drives development in all areas of human activity, including electrical and electronic equipment. However, the production of new equipment has a significant impact on the natural environment and a relatively high consumption of natural resources. To address these issues, the circular economy has been implemented in recent years by promoting and introducing numerous measures to facilitate the recycling of used goods. However, it has been found that there are many obstacles and difficulties currently faced by decision and policy makers. In this paper, we try to fill the research gap by presenting the prototype of an information system (IS) that could help not only these stakeholders, but also other interested parties, to move towards a circular economy through the efficient management of used electrical and electronic equipment (e-waste). In this context, we present the prototype of the system and elaborate on its two main components, namely functionality and user interface. Furthermore, we discuss the future research directions regarding the development of existing and new system features, followed by a comprehensive usability testing.