Show publications from the year
-
Show all publications from the year 2025
-
Show all publications from the year 2024
-
Show all publications from the year 2023
-
Show all publications from the year 2022
-
Show all publications from the year 2021
-
Show all publications from the year 2020
-
Show all publications from the year 2019
-
Show all publications from the year 2018
-
Show all publications from the year 2017
-
Show all publications from the year 2016
-
Show all publications from the year 2015
-
Show all publications from the year 2014
-
Show all publications from the year 2013
-
Show all publications from the year 2012
-
Show all publications from the year 2011
-
Show all publications from the year 2010
-
Show all publications from the year 2009
-
Show all publications from the year 2008
-
Show all publications from the year 2007
-
Show all publications from the year 2006
-
Show all publications from the year 2005
-
Show all publications from the year 2004
-
Show all publications from the year 2003
-
Show all publications from the year 2002
-
Show all publications from the year 2001
-
Show all publications from the year 2000
-
Show all publications from the year 1999
-
Show all publications from the year 1998
-
Show all publications from the year 1988
-
Show all publications from the year 1987
-
Show all publications from the year 1980
Publications from the year 2024
Show all-
Marine polymers in tissue bioprinting: Current achievements and challenges
- Adrianna Banach-Kopeć
- Szymon Mania
- Robert Tylingo
Bioprinting has a critical role in tissue engineering, allowing the creation of sophisticated cellular scaffolds with high resolution, shape fidelity, and cell viability. Achieving these parameters remains a challenge, necessitating bioinks that are biocompatible, printable, and biodegradable. This review highlights the potential of marine-derived polymers and crosslinking techniques including mammalian collagen and gelatin along with their marine equivalents. While denaturation temperatures vary based on origin, warm-water fish collagen and gelatin emerge as promising solutions. Building on the applications of mammalian collagen and gelatin, this study investigates their marine counterparts. Diverse research groups present different perspectives on printability and cell survival. Despite advances, current scaffolds are limited in size and layers, making applications such as extensive skin burn treatment or tissue regeneration difficult. The authors argue for the development of bioprinting, which includes spherical and adaptive printing. In adaptive printing, layers differentiate and propagate sequentially to overcome the challenges of multilayer printing and provide optimal conditions for the growth of deeply embedded cells. Moving the boundaries of bioprinting, future prospects include transformative applications in regenerative medicine.
-
Maritime traffic situation awareness analysis via high-fidelity ship imaging trajectory
- Xinqiang Chen
- Jinbiao Zheng
- Chaofeng Li
- Bing Wu
- Huafeng Wu
- Jakub Montewka
Situation awareness provides crucial yet instant information to maritime traffic participants, and significant attentions are paid to implement traffic situation awareness task via various maritime data source (e.g., automatic identification system, maritime surveillance video, radar, etc.). The study aims to analyze traffic situation with the support of ship imaging trajectory. First, we employ the dark channel prior model to remove fog in maritime videos to obtain high-resolution ship images (i.e., fog-free maritime images). Second, we track ships in each maritime image with the scale adaptive kernel correlation filter (SAMF), and thus obtain raw ship imaging trajectories. Third, we cleanse abnormal ship trajectory samples via curve-fitting and down sampling method, and thus further maritime traffic situation analysis is implemented. We analyze maritime traffic situation in three typical videos (i.e., three typical maritime traffic scenarios), and experimental results suggested that the proposed framework can extract high-resolution ship imaging trajectory for fulfilling the task of accurate maritime traffic situation awareness.
-
MARS - BAZA. warsztaty pozaziemskiej architektury ekstremalnej. Warsztaty w ramach Bałtyckiego Festiwalu Nauki
- Aleksandra Karpińska
- Agnieszka Kurkowska
- Marta Koperska-Kośmicka
- Marcin Kulesza
Jak przetrwać w różnych warunkach? Czego potrzebujemy, by przeżyć, a czego, by żyć wygodnie? Poszukamy odpowiedzi na te pytania, by stanąć przed nie lada misją: wspólnie podejmiemy się największego wyzwania przyszłości - zbudujemy bazę na Marsie! Budowa schronienia, bazy, domu - troska o zaspokojenie podstawowych potrzeb towarzyszy nam od zawsze, a budowanie jest jednym z pierwszych trwałych działań ludzi, pomagającym spełnić nasze potrzeby bytowe. Z innymi wyzwaniami stykamy się jednak, kiedy planujemy budować dom, a innymi, kiedy spotykamy się z warunkami ekstremalnymi, kiedy standardowe rozwiązania nie mają zastosowania. Lekcja myślenia o projektowaniu w warunkach ekstremalnych to wstęp do zadania praktycznego w nurcie dizajnu spekulatywnego: uczestnicy będą projektować i budować w skali 1:1 model własnej bazy na Marsie.
-
Materiałowe aspekty budowy narzędzi docierarek tarczowych do płaszczyzn
- Adam Barylski
Przedstawiono problematykę doboru materiałów na narzędzia w operacjach docierania i szlifowania powierzchni na obrabiarkach tarczowych. Scharakteryzowano stosowane materiały na tego typu narzędzia oraz wybrane konstrukcje tarcz do obróbki elementów płaskich i płasko-równoległych. Wskazano na korzystne zastosowanie żeliw sferoidalnych w aspekcie aktywizacji powierzchni czynnej docieraków ścierniwem. Przedstawiono analizę modelową aktywizacji docieraków z niestopowego żeliwa sferoidalnego. Omówiono opracowane konstrukcje narzędzi ścierno-metalowych oraz porównano docieranie luźnym ścierniwem i szlifowanie ściernicami segmentowymi na docierarkach tarczowych.
-
Materiały konstrukcyjne
- Beata Majkowska-Marzec
Rozdział dotyczy materiałów konstrukcyjnych do budowy elektrowni jądrowych. Omówiono wymagania stawiane takim materiałom i dokonano charakterystyki najczęściej stosowanych grup materiałowych takich jak stale węglowe, stale niskostopowe, stopy cyrkonu, niklu i wieloskładnikowe, ceramiki, cementy, betony i in.
-
Maternal Health Risk Assessment using Digital Twin Application
- Paulina Leszczełowska
- Magdalena Mazur-Milecka
- Natalia Kowalczyk
- Milena Sobotka
Pregnancy in a life of a woman, is an important time that is connected with both physiological and psychological changes. This paper aims at developing a digital twin application that allows to assess mother’s health risk and help to diagnose them. The system presented in this paper includes models for three health outcomes: maternal health risk level, diagnosis of gestational diabetes mellitus (GDM), and diagnosis of late onset preeclampsia. The system included an examination of a data generation method. The model destined to assess the risk level achieved an accuracy of 83.5%. GDM model obtained a high precision of 97.2%. The analysis of preeclampsia data generation has shown a great potential for future use. The developed digital twin application serves to exhibit the mentioned models and offer an insight into the future diagnostic tool designed for maternal healthcare in the coming years
-
Mathematical Modeling of Ice Dynamics in the Area of the Planned Siarzewo Reservoir
- Tomasz Kolerski
River regulation is an inseparable aspect of the economic progress of countries, and based on the examples of highly developed countries, it may be concluded that their development could be partially supported by properly conducted water management. The construction of dams in cold regions or areas where ice phenomena are observed in winter, requires taking into account the impact of ice on the structure and the impact of the designed facilities on ice transport. In the context of the impact of ice on structures, the design of hydrotechnical facilities should consider the determination of forces transferred to the planned facilities, the impact of ice on the operation of locks and outer ports, the load of ice on ecological compensations, erosion processes caused by the presence of ice, and increasing losses in electricity production. Large hydrotechnical facilities will also significantly influence the dynamics of ice processes, both in terms of ice cover formation and the method of ice flow during ice-breaking operations, and, above all, changes in the river’s congestion potential.
-
MATRYCA. NANO – qual-IA.
- Krzysztof Wróblewski
Wystawa podejmie problem konstytuowania i określania stopnia „zrozumiałości” wypowiedzi artystycznych (w jej różnych formach). Punktem odniesienia dla powstałych prac są pojęcia matrycy społecznej oraz treści percepcyjnej. >>Jaka może być najmniejsza porcja informacji? Jaka może być najmniejsza porcja doświadczenia? << Nikt nie wie do czego funkcjonalnie służy świadomość. Super inteligencja umożliwia szybkie przetwarzanie danych (jak w AI), które jednak potrafi odbywać się bez udziału świadomości. Matryca (łac. mater– matka, ang - matrix) jest to ogólne określenie formy do wykonywania kopii. W biologii molekularnej „matryca” to fragment DNA, na którym odbywa się amplifikacja - proces, podczas którego dochodzi do zwielokrotniania liczby lub zwiększania ilości. Najczęściej termin ten jest stosowany w odniesieniu do powielania (namnażania) DNA w genomie. Zachodzi pod wpływem różnych hormonów, które regulują funkcjonowanie narządów organizmu. Można obserwować zwrotne oddziaływanie pomiędzy wydzielaniem hormonów a stanami psychicznymi wywołanymi w związku z doświadczaniem silnych emocji i uczuć. Odbiorczość (receptywność) i intencjonalność (ukierunkowane działanie) są ważnym elementem fenomenu qualiów - jednostek percepcyjnych właściwych człowiekowi. Rozważa się nawet możliwość, że ludzki umysł może łamać funkcję falową, tworzyć kolaps kwantowy i tym samym wpływać na „matrycę” podłoża świadomości (tego nie potrafi obliczeniowa sztuczna inteligencja). Brać jednak trzeba też pod uwagę ograniczone zdolności poznawcze człowieka - błędy poznawcze, przekonania fałszywe, idealizacje, uproszczenia, luki pamięciowe i w postrzeganiu. Jak owe braki miałyby wpływać na proces łamania funkcji kwantowej? Jak bardzo kreowana w umyśle utopia wpływać może na treści przeżycia a tym samym kształtować „ukierunkowaną” postawę i określać kontekst sensu? Qualia są dla percepcji niczym układ hormonalny w organizmie. Działaniowy i performatywny status przeżyć może w konsekwencji wpływać na charakter zaangażowania jednostki w społeczną matrycę wspólnotowego uczestnictwa. Czy owo uczestnictwo jest jednak wystarczające jako warunek zrozumiałości prezentowanej treści, choćby w wypowiedzi artystycznej? Koncepcja: Marek Rogulski TNS / ICS
-
Maximizing Bio-Hydrogen and Energy Yields Obtained in a Self-Fermented Anaerobic Bioreactor by Screening of Different Sewage Sludge Pretreatment Methods
- Alaa A. El-kebeer
- Usama F. Mahmoud
- Sayed Ismail
- Abu Abbas E. Jalal
- Przemysław Kowal
- Hussein Al-Hazmi
- Gamal K. Hassan
Egypt faces significant challenges in managing its sewage sludge generated in large quantities from wastewater treatment plants. This study investigates the feasibility of utilizing sewage sludge as a renewable resource for hydrogen production through anaerobic digestion at the 100 L bioreactor level. Hydrogen is considered a promising alternative energy source due to its high energy content and environmental benefits. To optimize the microbial degradation process and maximize hydrogen production from sewage sludge, a specialized pretreatment is necessary. Various pretreatment methods have been applied to the sewage sludge, individually and in combination, to study the bio-hydrogen production from sewage sludge. The four methods of treatment were studied in batch assays as a pilot scale. Thermal pretreatment of sewage sludge significantly increases bio-hydrogen production yield compared to other sewage sludge pretreatment methods, producing the highest H2 yield (6.48 LH2/g VS). In general, the hydrogen yield of any type of pretreated inoculum was significantly higher than the untreated inoculum. At the same time, alkaline pretreatment improved the hydrogen yield (1.04 LH2/g VS) more than acid pretreatment (0.74 LH2/g VS), while the hydrogen yield for the combination of pretreatments (shock alkali pretreatment) was higher than both (1.73 LH2/g VS), On the other hand, untreated sewage sludge (control) had almost no hydrogen yield (0.03 LH2/g VS). The self-fermented anaerobic bioreactor improved sewage sludge utilization, increased bioenergy yields, and seems to be promising for treating complex wastes at this scale.
-
Maximizing SDN resilience to node‐targeted attacks through joint optimization of the primary and backup controllers placements
- Michał Pióro
- Mariusz Mycek
- Artur Tomaszewski
- Amaro de Sousa
In Software Defined Networks (SDN) packet data switches are configured by a limited number of SDN controllers, which respond to queries for packet forwarding decisions from the switches. To enable optimal control of switches in real time the placement of controllers at network nodes must guarantee that the controller-to-controller and switch-to-controller communications delays are bounded. Apart from the primary controllers that control the switches in the nominal state, separate backup controllers can be introduced that take over when the primary controllers are unavailable, and whose delay bounds are relaxed. In this paper we present optimization models to jointly optimize the placement of primary and backup controllers in long-distance SDN networks, aimed at maximizing the network's resilience to node-targeted attacks. Applying the models to two well-known network topologies and running a broad numerical study we show that, when compared with the standard approach of using only primary controllers, the use of backup controllers provides significant resilience gains, in particular in case of strict delay bounds.
-
Measurement Performance Verification of Asynchronous Method for Simultaneous Estimation of Object Position and Orientation
- Jarosław Sadowski
- Olga Błaszkiewicz
- Krzysztof Cwalina
- Alicja Olejniczak
- Piotr Rajchowski
- Jacek Stefański
The paper describes the results of a measurement verification of the effectiveness of an asynchronous method of locating an object on a plane using localization signals sent simultaneously from two transmitters placed on that object at a known distance from each other. The advantage of proposed solution is ability to estimate position of mobile object by set of reference receivers that can work asynchronously, which simplifies the construction of reference nodes.
-
Measuring Tilt with an IMU Using the Taylor Algorithm
- Jerzy Demkowicz
This article addresses the important problem of tilt measurement and stabilization. This is particularly important in the case of drone stabilization and navigation in underwater environments, multibeam sonar mapping, aerial photogrammetry in densely urbanized areas, etc. The tilt measurement process involves the fusion of information from at least two different sensors. Inertial sensors (IMUs) are unique in this context because they are both autonomous and passive at the same time and are therefore very attractive. Their calibration and systematic errors or bias are known problems, briefly discussed in the article due to their importance, and are relatively simple to solve. However, problems related to the accumulation of these errors over time and their autonomous and dynamic correction remain. This article proposes a solution to the problem of IMU tilt calibration, i.e., the pitch and roll and the accelerometer bias correction in dynamic conditions, and presents the process of calculating these parameters based on combined accelerometer and gyroscope records using a new approach based on measuring increments or differences in tilt measurement. Verification was performed by simulation under typical conditions and for many different inertial units, i.e., IMU devices, which brings the proposed method closer to the real application context. The article also addresses, to some extent, the issue of navigation, especially in the context of dead reckoning.
-
Mechanical Properties of 3D Printed Parts and Their Injection Molded Alternatives Subjected to Environmental Aging
- Angela Jadwiga Andrzejewska
Additive manufacturing is the technology used in medical, industrial, or lifestyle applications. The scientific literature include works reporting various manufacturing parameters’ influence on changes in additive manufacturing components’ mechanical behavior, especially with fused filament fabrication (FFF). The changes in mechanical strength and toughness of FFF compared to injection molding parts were studied. In the study, the FFF and injection molded parts were aged in buffered saline solution in temperature of 37C. The results show that by differentiating the orientation of the fibers during fabricating, it is possible to reach strength values similar to injection molded parts. Therefore, it was reported that the mechanical strength and toughness changed significantly after aging, and the FFF components lost strength more quickly than their injected alternatives. The research results can be useful during the fabrication of mechanically stable and biodegradable components, which can be more easily recycled than their injected alternatives when used with warmer temperatures and humidity. This article completes the present state of the art on the problem of environmental aging of parts produced from biodegradable materials. Especially, the research was related to the multilayer laminate structure.
-
Mechanical Properties of Additively Manufactured Polymeric Materials—PLA and PETG—For Biomechanical Applications
- Rui F. Martins
- Ricardo Branco
- Miguel Martins
- Wojciech Macek
- Zbigniew Marciniak
- Rui Silva
- Daniela Trindade
- Carla Moura
- Margarida Franco
- Cândida Malça
The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles for part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In addition, six specimens were tested for each printing orientation and material, providing insights into mechanical properties such as Tensile Strength, Young’s Modulus, and Ultimate Strain, suggesting the materials’ potential for biomedical applications. The experimental results were then compared with correspondent mechanical properties obtained from the literature for other polymers like ASA, PC, PP, ULTEM 9085, Copolyester, and Nylon. Thereafter, fatigue resistance curves (S-N curves) for PLA and PETG, printed along 45°, were determined at room temperature for a load ratio, R, of 0.2. Scanning electron microscope observations revealed fibre arrangements, compression/adhesion between layers, and fracture zones, shedding light on the failure mechanisms involved in the fatigue crack propagation of such materials and giving design reference values for future applications. In addition, fractographic analyses of the fatigue fracture surfaces were carried out, as well as X-ray Computed Tomography (XCT) and Thermogravimetric (TGA)/Differential Scanning Calorimetric (DSC) tests.
-
Mechanical response of human thoracic spine ligaments under quasi-static loading: An experimental study
- Radosław Wolny
- Tomasz Wiczenbach
- Angela Andrzejewska
- Jan Henryk Spodnik
Purpose This study aimed to investigate the geometrical and mechanical properties of human thoracic spine ligaments subjected to uniaxial quasi-static tensile test. Methods Four human thoracic spines, obtained through a body donation program, were utilized for the study. The anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), capsular ligament (CL), ligamenta flava (LF), and the interspinous ligament and supraspinous ligament complex (ISL + SSL), were investigated. The samples underwent specimen preparation, including dissection, cleaning, and reinforcement, before being immersed in epoxy resin. Uniaxial tensile tests were performed using a custom-designed mechanical testing machine equipped with an environmental chamber (T = 36.6 °C; humidity 95%). Then, the obtained tensile curves were averaged preserving the characteristic regions of typical ligaments response. Results Geometrical and mechanical properties, such as initial length and width, failure load, and failure elongation, were measured. Analysis of variance (ANOVA) revealed significant differences among the ligaments for all investigated parameters. Pairwise comparisons using Tukey's post-hoc test indicated differences in initial length and width. ALL and PLL exhibited higher failure forces compared to CL and LF. ALL and ISL + SSL demonstrated biggest failure elongation. Comparisons with other studies showed variations in initial length, failure force, and failure elongation across different ligaments. The subsystem (Th1 – Th6 and Th7 – Th12) analysis revealed increases in initial length, width, failure force, and elongation for certain ligaments. Conclusions Variations of both the geometric and mechanical properties of the ligaments were noticed, highlighting their unique characteristics and response to tensile force. Presented results extend very limited experimental data base of thoracic spine ligaments existing in the literature. The obtained geometrical and mechanical properties can help in the development of more precise human body models (HBMs).
-
Mechanisms of Li deposition on graphite anodes: surface coverage and cluster growth
- Arihant Bhandari
- Jacek Dziedzic
- John R. Owen
- Denis Kramer
- Chris-Kriton Skylaris
Li plating on the anode is a side reaction in Li-ion batteries which competes with Li intercalation and leads to loss of capacity. Growth of Li clusters into dendrites is a potential safety hazard for batteries which can lead to internal short-circuit and fires. We consider two possibilities of Li deposition on the surface of graphite anode: deposition of Li+ ions uniformly on the surface and deposition of clusters of metallic Li. Using ab initio simulations, we predict the operating voltage for the occurrence of the above processes and safety measures to prevent dendrite growth in batteries. We find that Li deposition occurs in the following stages: at positive voltages vs. Li, surface deposition of Li+ ions is the dominant process. Below a critical cross-over voltage, the process of reduction of aggregated Li+ ions and the formation of metallic Li clusters takes over. This cross-over voltage is found to be −12 mV on the basal plane of unlithiated graphite and −29 mV on lithiated graphite. To prevent formation of Li clusters and for safe operation of Li-ion batteries, the voltage on the graphite anode should be kept above the cross-over value.
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
- K. M. Monica
- J. Shreeharsha
- Przemysław Falkowski-Gilski
- Bożena Falkowska-Gilska
- Mohan Awasthy
- Rekha Phadk
Introduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic images are acquired from two online benchmark datasets: International Skin Imaging Collaboration (ISIC) 2020 and Human against Machine (HAM) 10000. Subsequently, a normalization technique is employed on the dermoscopic images to decrease noise impact, outliers, and variations in the pixels. Furthermore, cancerous regions in the pre-processed images are segmented utilizing the mask-faster Region based Convolutional Neural Network (RCNN) model. The mask-RCNN model offers precise pixellevel segmentation by accurately delineating object boundaries. From the partitioned cancerous regions, discriminative feature vectors are extracted by applying three pre-trained CNN models, namely ResNeXt101, Xception, and InceptionV3. These feature vectors are passed into the modified Gated Recurrent Unit (GRU) model for MSC classification. In the modified GRU model, a swish-Rectified Linear Unit (ReLU) activation function is incorporated that efficiently stabilizes the learning process with better convergence rate during training. Results and discussion: The empirical investigation demonstrate that the modified GRU model attained an accuracy of 99.95% and 99.98% on the ISIC 2020 and HAM 10000 datasets, where the obtained results surpass the conventional detection models.
-
Meldrum’s acid assisted formation of tetrahydroquinolin‑2‑one derivatives a short synthetic pathway to the biologically useful scaffold
- Małgorzata Ryczkowska
- Alicja Trocka
- Anna Hromova
- Sławomir Makowiec
A new method for the preparation of tetrahydroquinolin-2-one derivatives is presented. This approach involves a two-step reaction between enaminones and acylating agents, immediately followed by electrophilic cyclization, all within a single synthesis procedure, eliminating the need to isolate intermediates. The entire process is facilitated by the use of acyl Meldrum’s acids which not only shortens the preparation time of the substrates but also easily extends the range of substituents That can be used. The method’s scope and limitations were evaluated with various reagent combinations thus demonstrating its general applicability to the synthesis of tetrahydroquinolin-2-one core. Interestingly, some exceptions to the regular reaction pathway were observed when a strong EDG (electron donating group) was introduced via acyl Meldrum’s acids. The underlying mechanism of this phenomenon was elucidated during the investigation.
-
MEMS Modeling in the Context of Inertial Navigation
- Jerzy Demkowicz
Underwater navigation is a research topic current undertaken in many areas of underwater research. The article presents an analysis resulting from MEMS modelling in the context of inertial navigation. The ideal approach was confronted with its limitations, but a non-linear approach, close to the real one, was also presented. Both models were compared in the context of inertial navigation. Random disturbances and their impact on linear and nonlinear dynamic systems, and in this context on Brownian noise motion, were also analysed. The linear velocity and displacement estimates generated by the presented models were compared to the ideal responses. The phenomenon of bifurcation in the context of inertial measurements is presented. Some of the analysis is performed on real data, but for greater clarity, some is performed on simulated data to highlight design issues and limitations.
-
Merton-type default risk and financial performance: the dynamic panel moderation of firm size
- Muhammad Mushafiq
- Syed Ahmad Sami
- Muhammad Khalid Sohail
- Muzammal Ilyas Sindhu
Purpose – The main purpose of this study is to evaluate the probability of default and examine the relationship between default risk and financial performance, with dynamic panel moderation of firm size. Design/methodology/approach – This study utilizes a total of 1,500 firm-year observations from 2013 to 2018 using dynamic panel data approach of generalized method of moments to test the relationship between default risk and financial performance with the moderation effect of the firm size. Findings – This study establishes the findings that default risk significantly impacts the financial performance. The relationship between distance-to-default (DD) and financial performance is positive, which means the relationship of the independent and dependent variable is inverse. Moreover, this study finds that the firm size is a significant positive moderator between DD and financial performance. Practical implications – This study provides new and useful insight into the literature on the relationship between default risk and financial performance. The results of this study provide investors and businesses related to nonfinancial firms in the Pakistan Stock Exchange (PSX) with significant default risk’s impact on performance. This study finds, on average, the default probability in KSE ALL indexed companies is 6.12%. Originality/value – The evidence of the default risk and financial performance on samples of nonfinancial firms has been minimal; mainly, it has been limited to the banking sector. Moreover, the existing studies have only catered the direct effect of only. This study fills that gap and evaluates this relationship in nonfinancial firms. This study also helps in the evaluation of Merton model’s performance in the nonfinancial firms.