Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Recent items

  • The influence of azide and imidazole on the properties of Mn- and Cd-based networks: conductivity and nonlinear phenomena
    • Monika Trzebiatowska
    • Dorota A. Kowalska
    • Agnieszka Ciżman
    • Natalia Wójcik
    • Ryszard Barczyński
    • Adam Pikul
    • Jan K. Zaręba
    • Marcin Palewicz
    • Tomasz Piasecki
    • Krystian Roleder
    • Marek Gusowski
    • Mirosław Mączka
    2024 Journal of Materials Chemistry C

    We report a study on a family of four new Mn- and Cd-azide-imidazolate-based compounds with various crystal architectures. Notably, three of these compounds display noncentrosymmetric crystal arrangements at room temperature, a rare phenomenon in hybrid organic–inorganic materials. Both nonlinear optical (NLO) and electrical phenomena in these compounds are observed. The NLO processes include second and third harmonic generation, while the electrical nonlinear phenomena include the presence of polarization and a coercive field in the capacitance measurements (1–2 μC cm−2), and a piezoelectricity with ca. d33 = 0.2 × 10−12 m V−1 coefficient. Additionally, the presence of the second and third harmonics is detected in DC conductivity measurements. The phase transition (PT) present in Mn-based compounds at ca. 370 K is confirmed by DSC, X-ray diffraction, Raman spectroscopy, dielectric, DC conductivity and capacitance measurements. The PT is triggered by the motions of imidazole molecules around a nitrogen-metal bond with minor adjustment of azide bridges in response to this motion as derived from the X-ray diffraction and spectroscopic data. Mn-analogues also feature antiferromagnetic order. Both Cd- and Mn-imidazolate-azides exhibit a conductivity, with a mixed electron/proton hopping transport mechanism, in the case of Cd- similar to those of classic semiconductors.


  • The influence of brace to chord rotational connection stiffness on stability of the truss
    • Marcin Krajewski
    2024 Bulletin of the Polish Academy of Sciences-Technical Sciences

    The paper is devoted to the numerical analysis of the roof truss subjected to upward wind loading and braced at the tensioned top chord. The linear buckling analysis were performed for the beam and shell model of the structure. As the result the influence of rotational connection stiffness between the brace and the top chord on the truss stability was appointed. The biaxial strength testing machine was used to conduct the experimental tests of the rotational connection stiffness between selected steel profiles. The results in the form of measured structural displacements and rotations were presented. The static nonlinear analysis results performed for the shell model of the structural connection were compared to the results obtained on the experimental set-up.


  • The Influence of Global Corrosion Degradation on Localized Damage Detection Using Guided Waves
    • Beata Zima
    • Emil Roch
    • Jochen Moll
    2024

    This paper presents the results of a numerical analysis of the influence of corrosion degradation of metal plates on the wave propagation phenomenon. There are several different corrosion types, but general and pitting corrosion are the most common. General corrosion is more or less uniformly distributed over the entire exposed surface of the metal while pitting corrosion takes the form of localized cracks. Because the general corrosion is related to thickness reduction and in consequence, wave propagation velocity, this study is focused on the influence of the variable thickness of corroded plate described by the statistical descriptors (average thickness, standard deviation and coefficient of variation) on the uncertainty of localized damage detection based on the algorithms incorporating velocity of the guided wave. Numerical simulations were conducted for corroded plates with localized cut-through damage. The irregular surface of the plates was modeled using random fields. In this study, the plates varying in degree of degradation (DoD) as well as in geometry of the surface have been analyzed. Such an approach allowed for observing the effects of both thickness reduction and the exact geometry of corroded plates on damage detection and localization. The common approach based on delay and sum algorithm to detect and localize damage has been applied here.


  • The influence of the geographic positioning system error on the quality of ship magnetic signature reproduction based on measurements in sea conditions
    • Jarosław Tarnawski
    • Krystian Buszman
    • Mirosław Wołoszyn
    • Bartosz Puchalski
    2024 Full text MEASUREMENT

    In previous studies, the authors performed the magnetic signature reconstruction of the marine ship Zodiak as part of the measurement campaign focused on recording magnetic data and the relative position of a ship during its passage over a magnetometer immersed on the testing ground. A high degree of representation of the magnetic signature was obtained. However, the recorded measurement data revealed new patterns of the multidipole model behavior that were not observed in the synthetic data based analyzes. It was assumed that the main factor influencing the abovementioned behavior of the model is the error in determining the geographical position of the ship in relation to the magnetometer. Therefore, another research was carried out to determine the relative position of the ship and the measurement device in sea conditions, in the area of the test site used in the previous study. For this purpose, two different classes of GPS receivers were used. The first receiver was the same as that used to determine the position of Zodiak in the previous measurement campaign, while the second receiver, treated as a reference, was a top-class geodetic receiver. The difference in indications between these two receivers gave a picture of the scale of errors in the data recorded during the previous measurement campaign. These errors are used in the article to analyze the effect of inaccuracies in determining the ship position on the quality of magnetic signature reproduction. Two types of signature reproduction error were introduced – the error based only on the data collected from the ship’s paths, and the error in the entire area of magnetic anomaly. The model of Zodiak was used to determine the value of the magnetic flux outside the paths. Profiles of differences in indications of GPS receivers at sea which were obtained from actual measurements were used to analyze the errors in determining the ship position. A measurable result of the work reported in the article is the map of the loss of quality of magnetic signature reproduction as a function of the ship position determination error, which can indicate the range of applicability of the model and the described method.


  • The influence of α,ω-diols and SiO2 particles on CO2 absorption and NH3 escaping during carbon dioxide capture in ammonia solutions
    • Temesgen Amibo
    • Donata Konopacka-Łyskawa
    2024 Full text Journal of CO2 Utilization

    Ammonia solutions are widely used solvents for CO2 capture. However, a significant disadvantage of these solvents is secondary pollution of the purified gas stream by desorbed ammonia. In this work, α,ω-diols, and colloidal silica have been proposed to reduce this undesired effect. Ammonia solutions with the addition of ethylene glycol (EG), 1,3-propanediol (PRD), 1,4-butanediol (BUD), 1,5-pentanediol (PED), or 1,6-hexanediol (HED) and ammonia solution with the addition of diol and colloidal SiO2 were tested. The concentration of CO2 and NH3 in the exhaust gas was continuously measured during the experiments. Based on the recorded measurements, the number of moles of CO2 absorbed and the number of moles of NH3 lost were calculated. Mass transfer coefficients for CO2 absorption and NH3 desorption were also determined. The studies showed that CO2 absorption occurred faster in ammonia solutions with EG, PRD, BUD, and HED, and the CO2 loading was higher than in pure NH3 solution. The most effective additive improving CO2 absorption was BUD, followed by HED. SiO2 particles improved slightly the absorption efficiency in most of the tested diol solutions. All diols used inhibited the escape of ammonia, with PED having the most effective effect. However, adding silica particles effectively inhibited ammonia escape in all tested systems.


  • The KLC Cultures Synergy for Organizational Agility. Trust, Risk-Taking Attitude, and Critical Thinking as Moderators
    • Wioleta Kucharska
    • Maciej Kucharski
    • Tomasz Balcerowski
    2024 Full text

    Organizational agility is visible in organizational change adaptability, and it is based on the development of dynamic capabilities, strategic sensitivity of leaders, accuracy and timing of decision-making, learning aptitude, flexibility in thinking and acting, and smooth resource flow across organizations, including the knowledge resource. In such a context, this study aimed to expose how the knowledge, learning, and collaboration cultures approach (KLC) supports organizational agility when this relation is moderated by mutual trust among employees, risk-taking attitude, and critical thinking abilities. Based on the sample composed of 640 Polish knowledge workers and data analyzed with the structural equation modeling method (SEM), this study's results proved that the KLC culture synergy supports organizational agility building and that the mistakes acceptance component of learning culture is critical. Moreover, trust among workmates, risk-taking readiness, and critical thinking skills are significant mediators. The key novelty was exposed through the negative influence of a risk-taking attitude (uncertainty acceptance) on agility. Precisely, the lack of risk acceptance or, reversely, the risk-avoidance attitude supports agility. This is because agility, understood as smooth adaptability, is the effect of efficient risk management. Thanks to risk management and critical thinking, the negative impact of inaction risks can often be seen as higher than the risks of very innovative actions. The KLC approach, critical thinking, and trust among workmates support the smooth selection of risks that must be taken in today's dynamic business. Risk is inevitable. So, from this point, the essence of agility is the ability to smoothly and wisely select among risks that should be taken or avoided. In summary, agility can be considered to be the smooth selection of acceptable risks


  • The KLC Cultures' Synergy Power, Trust, and Tacit Knowledge for Organizational Intelligence
    • Wioleta Kucharska
    • Denise A. D. Bedford
    2024 Full text Electronic Journal of Knowledge Management

    This paper examines the impact of knowledge, learning, and collaboration culturessynergy (the KLC approach) on organizational adaptability. The SEM analysis method was applied to verify the critical assumption of this paper: that the KLC approach and trust support knowledge-sharing processes (tacit and explicit) and are critical for organizational intelligence activation.Specifically, the empirical evidence, based on a 640-case sample composed of Polish knowledge workers, revealedthat knowledge sharing, organizational intelligence, and innovativeness are vital benefits of the KLC cultures’synergy. It also highlighted that trust among workmates is critical to sustaining tacit knowledge sharing in an organization. Tacit knowledge, which is knowledge that is difficult to transfer to another person by means of writing it down or verbalizing it, is clearly identified as a key component of change adaptability, which is viewed as a measure oforganizational intelligence. Moreover, the acceptance of mistakesas a learning source -a learning culturecomponentthat supports trial-error learning,was found to betremendous for knowledge-sharing processes, organizational intelligence (change adaptability),and innovativeness. Thisstudyproved that knowledge sharing, organizational intelligence, and innovativeness are vitalbenefits of the synergy that offers the KLC cultures. Trust strengthens this effect. So, to gain these benefits, knowledge-driven organizations should employ trusted managers who trust others and, in addition to their professional credentials, exhibit strong habits of respecting knowledge, learning, and collaboration.


  • The landscape in the informal education of the youngest
    • Marta Koperska-Kośmicka
    2024 Full text Journal of Geography, Politics and Society

    The European Landscape Convention, adopted in 2000, aims to promote the protection, management and planning of landscapes and to organise cooperation on landscape-related issues. Countries that ratified the Convention undertook to introduce activities that would promote public education on the subject. In Poland, the Ministry of Education has identified schools as the place to implement these priorities. In the core curriculum of general education for primary schools, «creating opportunities to learn about the components of the landscape» was prescribed as the primary objective of the subject of nature. Although the school should play a leading role in the implementation of these tasks, even in its most elaborate form it is unable to meet all the needs. It should be complemented by non-formal education, which goes beyond the school curriculum and is a kind of its extension. This article is an attempt to present and evaluate the author’s educational project dealing with the topic of cultural landscape at the regional level.


  • THE METHODS OF TEACHING / LEARNING STRUCTURAL MECHANICS
    • Marek Skowronek
    2024

    Structural mechanics is a key issue to study for engineers. A high rank and high social responsibility profession requires both a high graded and intuitive approach. The evolution of learning / teaching methodology follows the novel technical achievements of every decade. The aim remains the same: to produce a professional to perform advanced relevant analysis and safe, optimal structural design


  • The role of governance to support smart community development: a systematic literature review
    • Magdalena Ciesielska
    • Gabriela Viale Pereira
    2024 Full text

    This paper studies the interaction between the smart community and smart governance concepts to elaborate on the role of governance to support local governments in developing smart communities’ strategies and solutions. We perform a systematic literature review to analyse how the concept of smart community has advanced in terms of its definitions, context, benefits, challenges, and enablers and propose a unified term with a focus on the governance aspects. The review highlights that some conceptualizations of smart communities have a more technical perspective that evolved towards a socio-technical concept, being information and communication technologies a mediator to behaviour change and a tool to improve decision-making and citizen-centricity, as well as promoting social governance.


  • The role of microbial coagulants on the physicochemical, proteolysis, microstructure and sensory properties of low-fat Edam cheese manufactured from ultrafiltered buffalo milk
    • Safaa A.M. El-Aidie
    • Roberto Castro Munoz
    • Basim Abu-Jdayil
    • Samia M. El-Dieb
    2024 Full text INTERNATIONAL DAIRY JOURNAL

    This work investigates the influence of using microbial coagulants, including Rhizomucor miehei (MCR) protease and Cryphonectria parasitica (MCC) protease, on the quality characteristics of low-fat Edam cheese made from ultrafiltered buffalo milk (LFUE). Concurrently, a benchmark with calf rennet (CR) has been also performed. Throughout a 90-day ripening period, the cheeses were assessed for their physicochemical features, proteolysis, texture, free amino acid and free fatty acid content, microstructure, and sensory attributes. The study revealed that both microbial coagulants had no significant impact on the physicochemical composition and firmness of the cheeses while slightly affected the free fatty acids. Cheeses made with microbial coagulants displayed higher proteolysis, with MCR and MCC cheeses exhibiting greater levels of water-soluble nitrogen and 12% trichloroacetic acid-soluble nitrogen than CR cheese. MCR and MCC cheeses exhibited more extensive breakdown of αs- and β-caseins, as indicated by the SDS-PAGE electrophoretogram, compared to CR cheese during ripening. As for the proteolytic activity, the microbial coagulant contributed to shaping the free amino acid content, microstructure, and sensory qualities of the cheeses. Notably, MCC cheese outperformed MCR or CR cheeses in terms of free amino acid levels. MCR and MCC cheeses resulted in smooth microstructures with uniform protein networks as observed by microscopy, while CR cheese displayed rough, granular surfaces. With the highest scores for appearance, body, texture, and flavor, MCC cheese demonstrated superior sensory properties compared with MCR and CR cheeses.


  • The role of resilience in explaining hotel growth: A fuzzy-set QCA approach
    • Diana Dryglas
    • Anna Lis
    • Marcin Suder
    2024 Full text Journal of Entrepreneurship, Management and Innovation

    Purpose: Due to the detrimental effects of the recent pandemic on the hotel sector, hotel resilience research and its impact on hotel recovery have received lots of academic attention. However, a sustainable perspective on hotel resilience, as an approach for investigating its impact on long-term hotel growth, has been largely overlooked in the hospitality resilience literature. Therefore, this paper aims to address the research gap by identifying the configuration of factors that constitute sustainable hotel resilience leading to the growth of selected hotels operating in Poland. Methodology: Data for analysis were obtained from surveys conducted with the participation of 120 managers of one- and two-star hotels. To achieve the goal, a fuzzy-set qualitative comparative analysis (fsQCA) was chosen, which belongs to the group of configurational analysis methods. Findings: Due to the asymmetric nature of the method, the analysis reveals configurations both of factors leading to high hotel growth and those leading to low growth. In both cases, two such factor configurations were obtained. For high levels of hotel growth, it was found that maintaining a high level of three factors simultaneously, namely employee resilience, CSR activities and leadership resilience or CSR activities, team resilience and leadership resilience, provided sufficient conditions. On the other hand, for low levels of growth, fsQCA indicated sufficient conditions in the form of a low level of CSR activities and leadership resilience or a low level of employee resilience and team resilience. These findings emphasise the role of combining different factors to improve hotel growth. Implications for theory and practice: The research contributes to the literature on resilience in the hospitality industry by developing a new theoretical perspective on the complex nature of combinations of factors that contribute to sustainable hotel resilience leading to both high and low growth. The research results also provide significant implications for entrepreneurs and managers, indicating the role of different combinations of factors in determining hotel growth. Originality and value: The knowledge regarding sustainable hotel resilience is still insufficient. The study identified the best combinations of factors (both internal and external) that constitute sustainable hotel resilience, which may be vital for hotel growth.


  • The role of the combined nitrogen-sulfur-carbon cycles for efficient performance of anammox-based systems
    • Dominika Derwis
    • Hussein Al-Hazmi
    • Joanna Majtacz
    • Przemysław Kowal
    • Slawomir Ciesielski
    • Jacek Mąkinia
    2024 SCIENCE OF THE TOTAL ENVIRONMENT

    The combined anammox/mixotrophic denitrification process was conducted in two granular sequencing batch reactors (SBRs) during a 200-day operation. Both reactors were fed with synthetic medium, but SBR2 was enriched with additional sulfate (SO4 2 ) which influenced sulfate reduction ammonium oxidation (SRAO) and heterotrophic reduction of SO4 2 by sulfate reducing bacteria. It was hypothesized that the addition of SO4 2 could positively impact the removal rates of N-S-C compounds. A low C/N ratio (0.4–1.6) was maintained to prevent inhibition of anaerobic ammonium oxidizing bacteria (AnAOB), and alternating chemical oxygen demand (COD) on/off conditions were used to regenerate AnAOB during COD-off phases and heterotrophic denitrifiers during COD-on phases. Stoichiometric analysis showed that introducing SO4 2 in SBR2 enhanced the ammonium utili zation rate, which was approximately 10 % higher compared to SBR1 in the final stage of the experiment (25.8 vs. 22.8 mg N/(g VSS⋅h)). The total nitrogen removal efficiencies ranged from 62 % to 99 % in both reactors, with SBR2 consistently exhibiting approximately 4 % higher efficiency than SBR1. In SBR2, the maximum overall SO4 2 utilization efficiency reached 27 % under COD-off conditions, while overall COD utilization was almost complete under COD-on conditions. A strong correlation (R2 =0.98) was observed between SO4 2 production and COD utilization. The key players responsible for N and S transformations in response to SO4 2 addition were Candidatus Brocadia and Chloroflexi - Anaerolineae. This study highlights the potential to enhance the overall efficiency of N-S-C removal by implementing an integrated anammox/mixotrophic denitrification process. The combination of cycles emerges as a sustainable approach for treating wastewater rich in N-S-C compounds.


  • The scope of fiscal decentralisation in EU countries: a comparative analysis
    • Alicja Sekuła
    • Karol Flisikowski
    2024 Full text EKONOMIA I PRAWO

    Motivation: Decentralization is one of the main challenges in public sector reform. In democratic countries the level of decentralisation in individual countries is not identical. The varying scope of decentralization affects the quality, quick and efficient decision-making by public leaders. Aim: Comparison of the extent of fiscal decentralisation in EU Member States; creation of groups of states with similar levels of decentralisation; identification of characteristics of countries where the average level of decentralisation is similar. Results: As a result of the study 4 clusters were created. The first includes centralized countries (small area, small population, e.g. Malta, Cyprus). The level of decentralization is a little bit higher in federal states and most of the countries that joined the EU in 2004 or later (cluster 2, the most numerous). Larger and more numerous countries are characterized by a higher level of decentralization (cluster 3, e.g. Italy, Poland, France). Clusters 4th is composed of the Nordic countries, i.e. in countries where a welfare state model with an extensive public sector has been implemented. As a result, it was found that the level of decentralization is related to the size of the country, population and political system.


  • The shape of an ROC curve in the evaluation of credit scoring models
    • Błażej Kochański
    2024 Full text STATISTICS IN TRANSITION

    The AUC, i.e. the area under the receiver operating characteristic (ROC) curve, or its scaled version, the Gini coefficient, are the standard measures of the discriminatory power of credit scoring. Using binormal ROC curve models, we show how the shape of the curves affects the economic benefits of using scoring models with the same AUC. Based on the results, we propose that the shape parameter of the fitted ROC curve is reported alongside its AUC/Gini whenever the quality of a scorecard is discussed.


  • The Smith-Watson-Topper parameter and fracture surface topography relationship for additively manufactured 18Ni300 steel subjected to uniaxial variable-amplitude loading
    • Wojciech Macek
    • Zbigniew Marciniak
    • Grzegorz Lesiuk
    • Przemysław Podulka
    • Cho-pei Jiang
    2024 Full text THEORETICAL AND APPLIED FRACTURE MECHANICS

    In this paper, the association between Smith-Watson-Topper (SWT) parameter and fracture surface topography is studied in additively manufactured maraging steel exposed to variable-amplitude fatigue loading. The post-failure fracture surfaces were examined using a non-contact 3D surface topography measuring system and the entire fracture surface method. The focal point is on the correspondence between fatigue characteristics, articulate by the SWT parameter, and the fracture surface topography features, represented by areal, volume, and fractal dimension parameters. A fatigue life prediction model based on SWT and fracture surface topography factors is proposed. The presented model expresses good compliance with fatigue test results. This model can be useful for post-mortem analysis of engineering elements under variable-amplitude loading fatigue, especially for materials produced by additive manufacturing (AM).


  • The study on the appearance of deformation defects in the yacht lamination process using an AI algorithm and expert knowledge
    • Paweł Szalewski
    • Tacjana Niksa-Rynkiewicz
    • Mariusz Deja
    2024 Full text Scientific Reports

    This article describes the application of the A-priori algorithm for defining the rule-based relationships between individual defects caused during the lamination process, affecting the deformation defect of the yacht shell. The data from 542 yachts were collected and evaluated. For the proper development of the algorithm, a technological process of the yacht lamination supported by expert decisions was described. The laminating technology is a complex process of a sequential application of individual laminates according to a special strategy. The A-priori algorithm allowed for obtaining the set of association rules defining the relationships between the defects resulting from the lamination process and influencing the deformation defect of the yacht shell, which is one of the most common errors in yacht production. The obtained aggregated rules were compared with the expert knowledge of the employees of the production, quality control, mould regeneration, and technology departments of the yacht yard. The use of the proposed A-priori algorithm allowed for the generation of relationship rules consistent with the general opinion of experts. Associative rules additionally took into account detailed causes of a specific error, which were not always noticed by employees of specific departments. The assessment of the lamination process using an artificial intelligence algorithm turned out to be more objective, which made it possible to gradually reduce the total number of errors occurring in the yacht shell lamination process, and thus shorten the time needed to repair errors and the total time of producing the yacht.


  • The (Un)Real City by Magdalena Abakanowicz: Guidelines for Cities in Times of Planetary Crisis
    • Izabela Mironowicz
    2024 Full text TEKA KOMISJI URBANISTYKI I ARCHITEKTURY Oddział PAN w Krakowie

    Three decades have passed since Magdalena Abakanowicz presented her concept of Bois de Nanterre — Arboreal Architecture, in response to a call for a broader reflection on approaches to urban landscaping and a reinterpretation of the meaning and evolution of the Grand Axis in Paris. This paper analyses the work presented by the artist from an urban planning perspective. It shows how the rich and multi-layered metaphor for the 21st-century city, embodied in the concept of the Bois de Nanterre, offers a pioneering and radical lesson for addressing contemporary urban problems.


  • The use of a 4 PB strain sweep fatigue test to evaluate characteristics of carbon grid reinforced asphalt beams
    • Marcin Stienss
    • Piotr Jaskuła
    • Cezary Szydłowski
    2024

    The article presents research results concerning pre-bituminized carbon grids for asphalt pavement reinforcement, which are used to prevent cracking and crack reflection thus increasing bearing capacity and durability of pavement. Research program involved testing of large sized double-layer samples, both reinforced and unreinforced. The advantage of using a carbon grid was especially visible after crack initiation. The energy during crack propagation phase was about three times higher in comparison with unreinforced samples. The maximum dissipated energy was significantly higher in the fatigue test for a reinforced samples, with also higher level of tensile strain.


  • The use of a genetic algorithm in the process of optimizing the shape of a three-dimensional periodic beam
    • Łukasz Doliński
    • Arkadiusz Żak
    • Wiktor Waszkowiak
    • Paweł Kowalski
    • Jacek Szkopek
    2024 Journal of Theoretical and Applied Mechanics

    Mechanical periodic structures exhibit unusual dynamic behavior thanks to the periodicity of their structures, which can be attributed to their cellular arrangement. The source of this periodicity may result from periodic variations of material properties within their cells and/or variations in the cell geometry. The authors present the results of their studies on the optimization of physical parameters of a three-dimensional axisymetrical periodic beam in order to obtain the desired vibroacoustic properties. The aim of the optimization process of the unit cell shape was to obtain band gaps of a given width and position in the frequency spectrum.


  • Therapeutic biomaterials – application in neurology and cardiology
    • Klaudia Malisz
    • Beata Świeczko-Żurek
    2024 Review and Research on Cancer Treatment

    Biomaterials are of interest in most medical fields. It's hard to imagine life without them. And due to the ever-increasing demand, scientists are developing new materials. Diseases of the nervous and cardiovascular systems are still a big problem, which are associated with a limited ability to regenerate brain or heart tissues. Therefore, this review discusses the advancement in biomaterial engineering for the treatment of neurological and cardiovascular diseases. Neurodegenerative diseases affect a large percentage of older people. Therefore, the review presents treatment options for Alzheimer's (AD), and Parkinson's diseases (PD). Another serious problem is cardiac ischemia. To regenerate heart tissue, scientists have proposed the use of extracellular vesicles, injectable hydrogels, and biomaterial-based cardiac patches. In addition to tissue engineering, implants are also developing in the field of cardiology. More and more modern materials are being created, e.g., for valve prostheses or vascular stents.


  • Thermally activated natural chalcopyrite for Fenton-like degradation of Rhodamine B: Catalyst characterization, performance evaluation, and catalytic mechanism
    • Jiapeng Yang
    • Kai Jia
    • Shaoyong Lu
    • Yijun Cao
    • Grzegorz Boczkaj
    • Chongqing Wang
    2024 Full text Journal of Environmental Chemical Engineering

    In this work, catalytic activity of natural chalcopyrite (CuFeS2) was improved by thermal activation. The modified chalcopyrite was used as efficient catalyst for degradation of organic dye Rhodamine B (RhB) through advanced oxidation process (AOP). Effects of catalyst dosage, H2O2 concentration, reaction temperature, solution pH, anions, and natural organic matter on the degradation efficiency of RhB were investigated. This study revealed that thermal activation at 300 °C changed the chemical valency of surface elements rather than transforming the major chemical phase of natural chalcopyrite. The Fenton-like degradation of RhB was significantly improved by thermally activated chalcopyrite. RhB degradation could be obtained under broad pH and showed high resistance to natural organic matter and anions. Under optimal conditions of H2O2 43.0 mM, catalyst 0.75 g/L, initial pH 5.1, and reaction temperature 25 °C, the degradation of RhB reached 96.7% at 50 min. Based on the rate constant of reaction kinetics, the activation energy for RhB degradation was calculated to be 9 kJ/mol. Radical scavenging experiments and electron paramagnetic resonance (EPR) technique demonstrated that RhB degradation was dominated by the generated hydroxyl radicals in activated chalcopyrite/H2O2 system. The formation of surface sulfates resulted from thermal activation induced the dissolved copper or iron ions, and promoted H2O2 activation and facilitated RhB degradation by reactive hydroxyl radicals. This work provides an in-depth understanding of the mechanism behind thermal activation to enhance the activity of natural chalcopyrite, offering a theoretical basis for utilizing natural minerals for Fenton-like treatment of organic wastewater towards cleaner production.


  • Thermosensitive composite based on agarose and chitosan saturated with carbon dioxide. Preliminary study of requirements for production of new CSAG bioink.
    • Adrianna Banach-Kopeć
    • Szymon Mania
    • Robert Tylingo
    • Agata Wawrzynowicz
    • Monika Pawłowska
    • Katarzyna Czerwiec
    • Milena Deptuła
    • Michał Pikuła
    2024 Full text CARBOHYDRATE POLYMERS

    This study introduces a method for producing printable, thermosensitive bioink formulated from agarose (AG) and carbon dioxide-saturated chitosan (CS) hydrogels. The research identified medium molecular weight chitosan as optimal for bioink production, with a preferred chitosan hydrogel content of 40–60 %. Rheological analysis reveals the bioink's pseudoplastic behavior and a sol-gel phase transition between 27.0 and 31.5 °C. The MMW chitosan-based bioink showed also the most stable extrusion characteristic. The choice of chitosan for the production of bioink was also based on the assessment of the antimicrobial activity of the polymer as a function of its molecular weight and the degree of deacetylation, noting significant cell reduction rates for E. coli and S. aureus of 1.72 and 0.54 for optimal bioink composition, respectively. Cytotoxicity assessments via MTT and LDH tests confirm the bioink's safety for L929, HaCaT, and 46BR.1 N cell lines. Additionally, XTT proliferation assay proved the stimulating effect of the bioink on the proliferation of 46BR.1 N fibroblasts, comparable to that observed with Fetal Bovine Serum (FBS). FTIR spectroscopy confirms the bioink as a physical polymer blend. In conclusion, the CS/AG bioink demonstrates the promising potential for advanced spatial cell cultures in tissue engineering applications including skin regeneration.


  • Three dimensional simulations of FRC beams and panels with explicit definition of fibres-concrete interaction
    • Ireneusz Marzec
    • Jan Suchorzewski
    • Jerzy Bobiński
    2024 ENGINEERING STRUCTURES

    High performance concrete (HPC) is a quite novel material which has been rapidly developed in the last few decades. It exhibits superior mechanical properties and durability comparing to normal concrete. HPC can achieve also superior tensile performance if strong fibres (steel or carbon) are implemented in the matrix. Thus, there exist the unabated interest in studying how the addition of different types of fibres modifies the behaviour of HPC. Nowadays, a standard numerical approaches to model the behaviour of fibre reinforced concrete (FRC) are carried out by means of the smeared or discrete crack modelling of homogenous media with appropriately changed stress-strain relationships. The objective of this paper is to develop a new and efficient mesoscale modelling approach for steel fibre reinforced high-performance concrete. The main idea of presented approach is to assume the fully 3D modelling with taking into account explicitly the distribution and orientation of the steel fibres. As a benchmark, results obtained from experimental campaign on beams and panels made from high-performance concrete with steel fibres of different sizes and dosages were taken. Results of numerical simulations were directly compared with experimental outcomes in order to validate and calibrate FE-model and to introduce the efficient numerical modelling tool.


  • Three modes of electrochemical impedance spectroscopy measurements performed on vanadium redox flow battery
    • Joanna Krakowiak
    • Wojciech Bącalski
    • Grzegorz Lentka
    • Pekka Peljo
    • Paweł Ślepski
    2024 Sustainable Materials and Technologies

    This article presents an innovative approach to monitor working redox flow batteries using dynamic electrochemical impedance spectroscopy, diverging from the commonly sequential impedance methods carried out under potentiostatic or galvanostatic conditions close to the open circle voltage. The authors introduce a fresh variation of dynamic impedance measurement that leverages an amplitude-modulated multi-frequency alternating current perturbation signal. This technique leads to a reduction in measurement time, making it possible to monitor impedance in real-time under typical operational conditions. Consequently, it effectively addresses the limitations stemming from the absence of stationary conditions during impedance measurements. There is no doubt that measurement techniques enabling the study of processes during the operational life of a battery provide the most valuable insights into the properties of these systems. The potential of this proposed approach is exemplified through the examination of a full vanadium redox flow battery as a case study. Classical impedance measurements were also conducted under potentiostatic and galvanostatic conditions with sequential frequency signal change, which requires stopping the battery operation, resulting in electrode potential changes of over 200 mV compared to the working system. Spectra for all modes of measurements were compared. In the case of dynamic measurements, such significant differences in spectra during charging and discharging are not observed, which is characteristic of classical measurements. The authors deliberately and consciously refrain from analyzing the results by fitting equivalent circuits.


  • Three-dimensional characterization of porosity in iron ore pellets: A comprehensive study
    • Pasquale Cavaliere
    • Behzad Sadeghi
    • Leandro Dijon
    • Aleksandra Laska
    • Damian Koszelow
    2024 Full text MINERALS ENGINEERING

    This paper presents a comprehensive study on the production and reduction of high-quality iron ore pellets characterized by a basicity index nearing 0.5 and diameters ranging from 1 to 2 cm. The reduction process was carried out in a hydrogen atmosphere at temperatures spanning 800–1000 ◦ C and a pressure of 8 bar. Initial f indings revealed substantial variations in pellet density and compressive strength, attributed to their mean dimensions. To delve into the microstructural transformations occurring during reduction, meticulous microtomographic analyses were conducted on each pellet before and after the reduction process. The research assessed reducibility factors such as porosity, pore size, and tortuosity adjustments across diverse reduction conditions. The study highlights the intimate connection between the reduction process rate, processing parameters, and pellet microstructure. Furthermore, the metallization tendencies were explored through extensive reduction experiments involving multiple pellets. These findings offer crucial insights into optimizing iron ore pellet performance during production and reduction processes, contributing to advancements in industrial applications.


  • Timed rolling and rising tests in Duchenne muscular dystrophy ambulant boys: a feasibility study
    • Agnieszka Sobierajska-Rek
    • Joanna Jabłońska-Brudło
    • Aneta Dąbrowska
    • Wiktoria Wojnicz
    • Jarosław Meyer-Szary
    • Jolanta Wierzba
    2024 MINERVA PEDIATRICA

    BACKGROUND: Functional activities are extensively used in motor assessments of patients with Duchenne muscular dystrophy. The role of timed items has been reported as an early prognostic factor for disease progression. However, there are two functional activities that are not widely assessed in clinical practice among Duchenne muscular dystrophy patients: rolling and bed rising. This study aimed to investigate whether the 360-degree roll (roll) and supine to sit-to-edge (bed rise) measurements are feasible tools reflecting the functional status of ambulatory DMD children by establishing possible correlations between validated measures: the Vignos Scale (VS), timed rise from floor and the 6-Minute Walk Test (6MWT). METHODS: A total of 32 ambulant boys with DMD were assessed using timed items, the 6MWT and VS. RESULTS: The roll and bed rise are correlated with each other. The 6MWT, the floor rise and VS are correlated with the roll and with the bed rise. CONCLUSIONS: Findings offer preliminary empirical evidence addressing feasibility and safety of roll and bed rise measurements. There is a potential clinical utility of these tests in assessing functional status of DMD ambulant patients.


  • TiO2 and Reducing Gas: Intricate Relationships to Direct Reduction of Iron Oxide Pellets
    • Pasquale Cavaliere
    • Behzad Sadeghi
    • Aleksandra Laska
    • Damian Koszelow
    2024 Full text METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE

    In response to the imperative for sustainable iron production with reduced CO2 emissions, this study delves into the intricate role of TiO2 in the direct reduction of iron oxide pellets. The TiO2-dependent reducibility of iron oxide pellets utilizing H2 and CO gas across varied temperatures and gas compositions is thoroughly investigated. Our findings unveil the nuanced nature of the TiO2 effect, underscored by its concentration-dependent behavior, revealing an optimal range between 1 and 1.5 pct TiO2, where a neutral or positive impact on reduction kinetics and diffusion coefficient is observed. Notably, the synergistic interplay of CO and H2 at 1000 C emerges as particularly efficacious, suggesting complementary effects on the reduction process. The introduction of H2 into the reducing atmosphere regulated by CO not only extends the transition range but also markedly expedites the rate of reduction. Furthermore, our study highlights the temperature sensitivity of the TiO2 effect, with higher TiO2 content correlating with prolonged reduction time in a 100 pct H2 atmosphere at 900 C. In a 100 pct H2 atmosphere, the non-contributory role of TiO2 stems from the water-gas shift reaction. Conversely, introducing H2 into a CO-controlled reducing atmosphere with TiO2 enhances the transition range and expedites the reduction rate. Additionally, our findings underscore the role of total iron content, revealing a direct correlation with the reduction process.


  • Torsional earthquake-induced pounding between adjacent buildings founded on different soil types
    • Mahmoud Miari
    • Robert Jankowski
    2024 Journal of Seismology and Earthquake Engineering

    This paper investigates the effect of the soil type on the torsional response of build- ings experiencing torsional pounding due to earthquake excitations. Six buildings (one 4-storey building and five 6-storey buildings) with different configurations have been considered. First, pounding between different structures has been analysed for a specified soil type and the effect of the torsional pounding and the contact asymmetry on the torsional response of colliding buildings has been investigated. Then, these pounding cases have been considered for different soil types to study the effect of the soil type on the torsional response of buildings experiencing torsional pounding. Five soil types have been considered, i.e. hard rock, rock, very dense soil and soft rock, stiff soil and soft clay soil. The results of the study indicate that the earthquake-induced torsional pounding causes an increase in the peak storey rotation of the colliding buildings as compared to the symmetric pounding in all cases. Higher peak storey rotations have been experienced for colliding buildings founded on the soft clay soil, then for buildings founded on the stiff soil, then for buildings founded on very dense soil and soft rock, and finally for buildings founded on the rock and hard rock.


  • Toward an understanding of occupational burnout among employees with autism – the Job Demands‑Resources theory perspective
    • Michał Tomczak
    • Konrad Kulikowski
    2024 Full text CURRENT PSYCHOLOGY

    This article aims to gain insight into the phenomenon of occupational burnout among employees with autism based on the theoretical framework of the Job Demands-Resources theory and the literature on employees with autism in the workplace. Firstly, we argue that although the resources and demands of the neurotypical and neurodivergent employees might be different, the theoretical mechanism of occupational burnout formation remains similar among the neurotypical and neurodivergent employees, leading to the similar burnout experience. Next, we distinguish key demands that might drain neurodiverse employees’ energy, and spark burnout, and propose a set of resources that might foster their achievement of work goals and mitigate demanding working conditions. We emphasise that the nature of job demands/resources that may cause burnout is not universal but might depend on how employees evaluate them, thus neurotypical and neurodiverse workers who evaluate the same work characteristics differently might complement each other, increasing organisational diversity without losing productivity. Our conceptual elaboration contributes to the theory and practice of healthier workplaces by providing tools and inspiration to managers, policymakers, and all stakeholders interested in creating a diverse and productive workplace. Moreover, our work might spark a much needed debate on occupational burnout among employees with autism and encourage conducting further empirical studies.


  • Toward Human Chromosome Knowledge Engine
    • Maiqi Wang
    • Yi Lai
    • Minghui Li
    • Haoxi Zhang
    • Edward Szczerbicki
    2024 Full text CYBERNETICS AND SYSTEMS

    Human chromosomes carry genetic information about our life. Chromosome classification is crucial for karyotype analysis. Existing chromosome classification methods do not take into account reasoning, such as: analyzing the relationship between variables, modeling uncertainty, and performing causal reasoning. In this paper, we introduce a knowledge engine for reasoning-based human chromosome classification that stores knowledge of chromosomes via a novel representation structure, the Chromosome Part Description (CPD), and reasons over CPDs by utilizing the probability tree model (PTM) for classification. Each CPD keeps information on a particular feature of chromosomes, while the PTM provides causal reasoning capability taking CPDs as nodes and dependencies between CPDs and types as edges. Experimental results show that the proposed knowledge engine’s performance increases when providing more CPDs and achieves 100% classification accuracy with more than three CPDs.


  • Towards a reliable method for extrapolation of propulsion performance for vessels with twin-crp-pod system
    • Hanna Pruszko
    • Maciej Reichel
    • Marek Necel
    • Sören Brüns
    2024 Full text OCEAN ENGINEERING

    The study presents power performance prediction of an Ultra Large Container Ship (ULCS) with hybrid twin-crp-pod propulsion system. Twin crp-pod propulsion system is a combination of three concepts: twin screw, contra-rotating propellers (crp) and conventional shaft propellers with pod propulsors behind. The presented study shows the current extrapolation method for crp propulsion systems and tries to point out its weaknesses. As a case study, a 400 m ULCS has been investigated in full-scale and in model scales of 24 and 37.416. The analyses were carried out for all scales with use of CFD numerical methods and for the scale of 37.416 based on towing tank tests. All the results have been extrapolated with the same method and results have been compared. The investigations clearly show differences in delivered power prediction extrapolated from towing tank results giving the maximum value and from CFD made to scale of 24 the minimum value. Finally, conclusions on possible sources of differences, including the numerical and analytical methods are presented.


  • Towards an analysis framework for operational risk coupling mode: A case from MASS navigating in restricted waters
    • Cunlong Fan
    • Jakub Montewka
    • Victor Bolbot
    • Yang Zhang
    • Yuhui Qiu
    • Shenping Hu
    2024 RELIABILITY ENGINEERING & SYSTEM SAFETY

    Maritime Autonomous Surface Ships (MASSs) constitute highly interconnected and tightly coupled multistate systems. Incorporating the coupling effects of both interactions and dependencies is centrally important to ensure navigation safety of MASSs. This paper proposes a framework for examining the coupling effects in the operational modes (OM) of MASSs. Failure Modes (FMs) of MASSs related to interactions with the environment and subsystems are identified using 24Model developed based on conventional ship accidents involving grounding in the west of Shenzhen port, China. FMs related to grounding are classified into the five risk types of human, organization, ship, environment, and technology, considering three OMs (states), i.e., manual control, remote control, and autonomous control. Based on this classification, the N-K model is applied to calculate the risk coupling values of scenarios involving multiple risk types. These scenarios are then ranked by the risk coupling values of the three OMs, and values are compared among different OMs. The results indicate that for grounding in the west of Shenzhen port most risk coupling values increase with increasing risk type diversity. Furthermore, the risk coupling mechanism in remote control differs significantly from that in manual control and autonomous control, thus risk management of MASS OMs should vary.


  • Towards hand grip force assessment by using EMG estimators
    • Robert Barański
    • Wiktoria Wojnicz
    • Bartłomiej Zagrodny
    • Michał Ludwicki
    • Agnieszka Sobierajska-Rek
    2024 MEASUREMENT

    The purpose of this study was to propose a method to assess individual regression (calibration) curves to establish a relationship between an isometric grip force and surface electromyography (EMG) estimator. In this study 18 healthy volunteers (12 male (23.0 ± 2.0 years) and 6 female (23.2 ± 0.7 years)) had been examined. Ten EMG estimators (mean absolute value, root mean square, entropy, energy, turns per second, mean of zero crossings, median power frequency, mean power frequency, and Hilbert transforms), two EMG locations (brachioradialis and flexor digitorum superficialis) and five types of regression curves (linear, exponential, power, logarithm, and quadratic polynomial) have been tested. Using a quadratic polynomial regression curve and energy EMG estimator of the flexor digitorum superficialis muscle, it was obtained the lowest dispersity of EMG estimator and the most accurate prediction of grip isometric force among all tested EMG estimators.


  • Towards sustainable catalyst-free biomass-based polyurethane-wood composites (PU-WC): From valorization and liquefaction to future generation of biocomposites
    • Adam Olszewski
    • Paulina Kosmela
    • Łukasz Piszczyk
    2024 Full text JOURNAL OF CLEANER PRODUCTION

    A substantial aspect of materials engineering lies in the responsible process of designing polymer-based materials. Due to environmental pollution, excessive consumption of natural resources, and increasing environmental awareness of society, there is a massive need for polyurethane (PU) materials with reduced environmental impact. To date, research on catalyst-free polyurethane-wood composites (PU-WC) has demonstrated a huge potential for commercialization in industrial production and can be used as a replacement for commonly used wood-plastic composites and wood-based panels. Based on this research, the introduction of new greener alternatives for petrochemical polyols to develop PU-WCs with a high biomass share could be interesting. In this study, up to 80% of bio-based polyol (BP) synthesized via biomass liquefaction was introduced to the polymer matrix. The effect of petrochemical polyol substitution was examined by mechanical testing, scanning electron microscopy (SEM), water absorption tests, and thermal analysis. The conducted research revealed that the structure and properties of PU-WCs strongly depend on the share of BP. The most promising composites were manufactured with up to 40% BP. The flexural strength of the PU-WC decreases from 25 to 9 MPa, and the flexural modulus varies from 1780 to 800 MPa. This may be caused by deteriorated adhesion between composite phases and a reduction in the stiffness of the materials due to the decrease in crosslinking density, which was confirmed by the decrease in glass transition temperature from 96 to 26 °C. In summary, this work shows the next step towards cleaner production of PU-WCs by substituting petrochemical polyols for alternatives synthesized using renewable resources.


  • Towards truly sustainable IoT systems: the SUPERIOT project
    • Marcos Katz
    • Tuomas Paso
    • Konstantin Mikhaylov
    • Luis Pessoa
    • Helder Fontes
    • Liisa Hakola
    • Jaakko Leppäniemi
    • Emanuel Carlos
    • Guido Dolmans
    • Julio Rufo
    • Marcin Drzewiecki
    • Hazem Sallouha
    • Bruce Napier
    • André Branquinho
    • Kerstin Eder
    2024 Full text Journal of Physics-Photonics

    This paper provides an overview of the SUPERIOT project, an EU SNS JU (Smart Networks and Services Joint Undertaking) initiative focused on developing truly sustainable IoT systems. The SUPERIOT concept is based on a unique holistic approach to sustainability, proactively developing sustainable solutions considering the design, implementation, usage and disposal/reuse stages. The concept exploits radio and optical technologies to provide dual-mode wireless connectivity and dual-mode energy harvesting as well as dual-mode IoT node positioning. The implementation of the IoT nodes or devices will maximize the use of sustainable printed electronics technologies, including printed components, conductive inks and substrates. The paper describes the SUPERIOT concept, covering the key technical approaches to be used, promising scenarios and applications, project goals and demonstrators which will be developed to the proof-of-concept stage. In addition, the paper briefly discusses some important visions on how this technology may be further developed in the future.


  • Towards Universal Visualisation of Emotional States for Information Systems
    • Michał Wróbel
    • Agnieszka Landowska
    • Karolina Makuch
    2024

    The paper concerns affective information systems that represent and visualize human emotional states. The goal of the study was to find typical representations of discrete and dimensional emotion models in terms of color, size, speed, shape, and animation type. A total of 419 participants were asked about their preferences for emotion visualization. We found that color, speed, and size correlated with selected discrete emotion labels, while speed correlated with arousal in a dimensional model. This study is a first step towards defining a universal emotion representation for use in information systems.


  • Transparent TiO2 nanotubes supporting silver sulfide for photoelectrochemical water splitting
    • Wiktoria Lipińska
    • Stefania Wolff
    • Katharina Dehm
    • Simon Hager
    • Justyna Gumieniak
    • Agnieszka Kramek
    • Ryan Crisp
    • Emerson Coy
    • Katarzyna Grochowska
    • Katarzyna Siuzdak
    2024 NANOSCALE

    Differences between photoelectrochemical and electrochemical activity were thoroughly investigated for the oxygen evolution reaction mediated by Ag2S deposited on two types of ordered titania substrates. Titanium dioxide nanotubes were fabricated by anodization of magnetron sputtered Ti films on ITO-coated glass substrates or directly from Ti foil. Further, Ag2S deposition on the nanotubes was carried out using successive ionic layer adsorption and reaction, known as SILAR, with 5, 25, and 45 cycles performed. Two types of nanotubes, one on transparent the other on non-transparent substrates were compared regarding their geometry, structure, optical, and electrochemical properties. It was demonstrated that the composite of Ag2S grown on transparent nanotubes exhibits higher catalytic activity compared to Ag2S grown on the nanotubes formed on Ti foil. The results showed that transparent nanotubes after modification with Ag2S by 25 SILAR cycles exhibit ca. 3 times higher photocurrent under visible light illumination than non-transparent ones treated with the same number of cycles. Furthermore, transparent nanotubes after 45 SILAR cycles of Ag2S exhibit enhanced activity towards oxygen evolution reaction with 9.3 mA cm−2 at 1.1 V vs. Ag/AgCl/0.1 M KCl which is six times higher than titania alone on Ti foil.


  • Transport Mechanism of Paracetamol (Acetaminophen) in Polyurethane Nanocomposite Hydrogel Patches—Cloisite® 30B Influence on the Drug Release and Swelling Processes
    • Justyna Strankowska
    • Małgorzata Grzywińska
    • Ewelina Łęgowska
    • Marek Józefowicz
    • Michał Strankowski
    2024 Full text Materials

    This article describes the swelling and release mechanisms of paracetamol in polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite). The transport mechanism, swelling and release processes of the active substance in nanocomposite matrix were studied using gravimetric and UV-Vis spectroscopic methods. Swelling and release processes depend on the amount of clay nanoparticles in these systems and the degree of crosslinking of PU/PEG/Cloisite® 30B hydrogel nanocomposites.


  • TR-Based Antenna Design with Forward FD: The Effects of Step Size on the Optimization Performance
    • Adrian Bekasiewicz
    • Sławomir Kozieł
    • Tom Dhaene
    • Marcin Narloch
    2024

    Numerical methods are important tools for design of modern antennas. Trust-region (TR) methods coupled with data-efficient surrogates based on finite differentiation (FD) represent a popular class of antenna design algorithms. However, TR performance is subject to FD setup, which is normally determined a priori based on rules-of-thumb. In this work, the effect of FD perturbations on the performance of TR-based design is evaluated on a case study basis concerning a total of 80 optimizations of a planar antenna structure. The obtained results demonstrate that, for the considered radiator, the performance of the final designs obtained using different FD setups may vary by as much as 18 dB (and by over 4 dB on average). At the same time, the a priori perturbations in a range between 1.5% and 3% (w.r.t. the initial design) seem to be suitable for maintaining (relatively) consistent and high-quality results.


  • Treatment of Odontogenic Maxillary Sinusitis with the Use of Growth Factors in Advanced Platelet-Rich Fibrin for Immediate Closure of Oro-Antral Communication: A Case Report
    • Paulina Adamska
    • Dorota Pylińska-Dąbrowska
    • Marcin Stasiak
    • Magdalena Kaczoruk-Wieremczuk
    • Ewa Kozłowska
    • Adam Zedler
    • Michal Studniarek
    2024 Full text INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

    Chronic odontogenic maxillary sinusitis (COMS), a prolonged inflammation of the maxillary sinus lasting over 12 weeks, is often a result of periapical lesions, marginal periodontitis, and complications like oro-antral communication (OAC) and fistula (OAF). OAC, commonly emerging post-teeth extraction in the lateral maxilla, lacks documented treatments using advanced platelet-rich fibrin (A-PRF). This study evaluates A-PRF’s efficacy in treating COMS and immediately sealing extensive OAC. A case of a 28-year-old male with COMS linked to a periapical lesion and supernumerary molars is presented. Treatment involved extracting specific teeth while preserving adjacent ones and using A-PRF for immediate OAC closure. A-PRF, enriched with growth factors, was pivotal in healing, showcasing enhanced tissue regeneration, pain reduction, and faster recovery. The findings suggest A-PRF as an effective adjunct in treating extensive OAC and COMS, proposing its inclusion in standard treatment protocols. This study underscores A-PRF’s potential in improving outcomes for patients with COMS and related complications.


  • Triplet–Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC
    • Amrutha Prabhakaran
    • Keshav Kumar Jha
    • Rengel Cane Sia
    • Ruben Arturo Arellano-Reyes
    • Nirod Kumar Sarangi
    • Mateusz Kogut
    • Julien Guthmuller
    • Jacek Czub
    • Benjamin Dietzek-Ivanšić
    • Tia E. Keyes
    2024 Full text ACS Applied Materials & Interfaces

    Triplet−triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration of the sensitizer and annihilator along with superior fluidity compared to other nanoparticle assemblies. They are also biocompatible and widely applied across drug delivery modalities. However, there are relatively few liposomal TTA-UC systems reported to date, so systematic studies of the influence of the liposomal environment onTTA-UC are currently lacking. Here, we report the first example of a BODIPY-based sensitizer TTA-UC system within liposomes and use this system to study TTA-UC generation and compare the relative intensity of the anti-Stokes signal for this system as a function of liposome composition and membrane fluidity. We report for the first time on time-resolved spectroscopic studies of TTA-UC in membranes. Nanosecond transient absorption data reveal the BODIPY-perylene dyad sensitizer has a long triplet lifetime in liposome with contributions from three triplet excited states, whose lifetimes are reduced upon coinclusion of the annihilator due to triplet−triplet energy transfer, to a greater extent than in solution.This indicates triplet energy transfer between the sensitizer and the annihilator is enhanced in the membrane system. Molecular dynamics simulations of the sensitizer and annihilator TTA collision complex in the membrane confirm the co-orientation of the pair within the membrane structure and that the persistence time of the bound complex exceeds the TTA kinetics. The relative intensity of the TTA-UC output across nine liposomal systems of different lipid compositions was explored to examine the influence of membrane viscosity on upconversion (UC). UC showed the highest relative intensity for the most fluidic membranes and the weakest intensity for highly viscous membranes. Overall, our study reveals that the co-orientation of the UC pair within the membrane is crucial for effective TTA-UC and that the intensity of the TTA-UC output can be tuned in liposomes by modifying their phase and fluidity. These new insights will aid in the design of liposomal TTA-UC systems for biomedicalapplications


  • Tunable emission and energy transfer of B2O3–Bi2O3–AlF3 glass system doped with Eu3+/Dy3+
    • Karolina Milewska
    • Michał Edmund Maciejewski
    • Michal Žitňan
    • José Joaquín Velázquez
    • Dušan Galusek
    • Wojciech Sadowski
    • Barbara Kościelska
    2024 JOURNAL OF LUMINESCENCE

    The structure and luminescent properties of the B2O3–Bi2O–AlF3 glass system doped with Eu3+/Dy3+ ions in different molar ratios were studied. A series of glasses were synthesized by the conventional melt quenching technique. Glass transition and crystallization temperatures were examined by Differential Thermal Analysis (DTA) measurements. The amorphous character of the prepared samples was confirmed by the X-ray diffraction (XRD) method. Raman and FTIR spectra were collected and deconvoluted to investigate the glass microstructure. Luminescence spectra revealed that the added rare-earth ions can be excited by a single wavelength. The emitted color can be tuned by changing the ratios of the Eu3+/Dy3+ ions and the excitation wavelength. Furthermore, the influence of the addition of AlF3 on the luminescence and decay times was investigated. In the glasses with 10 mol% AlF3 an enhancement of the emission and excitation spectra was detected. The energy transfer analysis confirms the energy transfer between Eu3+ and Dy3+ ions in the glass matrix. Additionally, the results of this study indicate that the B2O3–Bi2O–AlF3 glasses doped with Eu3+ and Dy3+ can be used as a color tunable phosphor.


  • Tuning of food wastes bioavailability as feedstock for bio-conversion processes by acoustic cavitation and SPC, SPS, or H2O2 as external oxidants
    • Zahra Askarniya
    • Lingshuai Kong
    • Chongqing Wang
    • Shirish H. Sonawane
    • Jacek Mąkinia
    • Grzegorz Boczkaj
    2024 Full text CHEMICAL ENGINEERING AND PROCESSING

    The growing amount of food wastes makes them a suitable source for the generation of bioproducts through anaerobic digestion. Appropriate hydrolysis of the feedstock can enhance the efficiency of production of desired products. In this work, acoustic cavitation (AC) was employed as a pretreatment method to enhance hydrolysis stage by the modification of model (potato-based) food waste for increase in soluble chemical oxygen demand (CODs) and dissolved carbohydrate. For the first time high and low frequency AC was compared for this purpose. The application of sole AC at a frequency of 20 kHz for feedstock loading of 3 % has led to 125 % and 124 % increase in CODs and dissolved carbohydrates, respectively. The combination of AC with external oxidants hydrogen peroxide (H2O2), sodium persulfate (SPS), and sodium percarbonate (SPC) was also studied. This part of the studies revealed that SPS has superior properties for increasing CODs by 258 % and dissolved carbohydrates by 240 %. On the other hand, addition of sodium hydroxide (NaOH) as alternative reagent, leads to a 173 % increase in CODs and 155 % increase in dissolved carbohydrates. Making both ways of processing highly effective to increase the bioavailability of food wastes for further biologic processing.


  • Tuning the work function of graphite nanoparticles via edge termination
    • Michael P. Mercer
    • Arihant Bhandari
    • Chao Peng
    • Jacek Dziedzic
    • Chris-Kriton Skylaris
    • Denis Kramer
    2024 Full text PHYSICAL CHEMISTRY CHEMICAL PHYSICS

    Graphite nanoparticles are important in energy materials applications such as lithium-ion batteries (LIBs), supercapacitors and as catalyst supports. Tuning the work function of the nanoparticles allows local control of lithiation behaviour in LIBs, and the potential of zero charge of electrocatalysts and supercapacitors. Using large scale density functional theory (DFT) calculations, we find that the surface termination of multilayer graphene nanoparticles can substantially modify the work function. Calculations in vacuum and in electrolyte show that manipulating the edge termination substantially modifies the potential not only around the edge, but also on the basal plane. Termination with hydrogen or oxygen completely reverses the potential distribution surrounding the basal plane and edges. The trends can be explained based on the work function differences of the edges dependent on termination, and that of the basal plane. Electronic equilibration between different surfaces at the nanoscale allows manipulation of the work function. We demonstrate a link between the area of the graphite basal plane via changing the nanoparticle size, and the work function. We expect that these insights can be utilised for local control of electrochemical functions of graphite nanoparticles prepared under oxidising or reducing conditions.


  • Typology, current state and non-destructive testing of timber roof trusses of historic churches in the West Vistula Delta, Poland
    • Tomasz Zybała
    • Monika Zielińska
    • Magdalena Rucka
    • Jarosław Przewłócki
    • Karol Grębowski
    2024 Full text Heritage Science

    This paper presents the current state of conservation of historic roof churches located in the Żuławy of Gdańsk (Poland). It also describes the architecture of these temples, the region itself and old carpentry techniques for constructing roof trusses. Interdisciplinary tests were carried out in six churches. The geometry of the load bearing structures, the moisture content and the carpentry technique were specified. The field survey also included visual inspections and non-destructive testing of timber structural elements of the roof constructions. The ground penetrating radar and ultrasonic testing methods were used to assess the structure and extent of the damage to the timber elements. The interdisciplinary research presented in this article is important in the planning of historic buildings conservation works and it might be applied to other timber structures.


  • UE ETS: an in-depth descriptive analysis.
    • Helena Anacka
    • Claudia Nardone
    2024

    The European Emission Trading System (EU ETS) plays a pivotal role in the EU’s strategy to address climate change, serving as a fundamental instrument for cost-effective reduction of greenhouse gas emissions. Notably, it inaugurated the word’s first major carbon market and it continues to the largest one. Chapter 1 provides an in-depth examination of the EU ETS, spanning from its inception in 2025 to 2020. After providing a descriptive analysis of emission from stationary installation by year, country, and sector, market dynamics is analyzed. This analysis encompasses transaction frequency and volumes traded annually, as well as a breakdown by type of account and month. The study places special emphasis on Italian firms, comparing trading and non-trading entities, firms engaged solely in buying or purchasing, and those involved in both buying and purchasing activities. Additionally, the analysis distinguishes between inter-firm and intra-firm trades within the market.


  • Ulgi podatkowe w sektorze MŚP - wyniki badań
    • Piotr Kasprzak
    2024

    Niniejsza książka powstała na podstawie rozprawy doktorskiej autora, której podstawowe cele obejmowały zbadanie i określenie, czy i w jakim stopniu preferencje podatkowe w postaci ulg i zwolnień są wykorzystywane przez przedsiębiorców należących do sektora MŚP. Celem poznawczym niniejszej pracy jest uporządkowanie wiedzy na temat stymulacyjnej funkcji podatków realizowanej poprzez system ulg i zwolnień. Badanie składało się z czterech etapów – badania pilotażowego w postaci sondażu ankietowego i wywiadów uzupełniających, zasadniczego badania ankietowego oraz drugiej tury wywiadów. Metoda sondażu diagnostycznego została wykorzystana przy zbieraniu danych pierwotnych wśród przedsiębiorstw sektora MŚP. Instrumentem pomiaru był opracowany przez autora kwestionariusz ankiety. Celem było przebadanie przedsiębiorstw spełniających definicję UE w zakresie mikro-, małych i średnich podmiotów, posiadających siedzibę na terytorium RP, podatników podatku dochodowego (CIT lub PIT), z różnych branż i sektorów Analiza wyników przeprowadzonych badań pozwoliła dokonać oceny wykorzystania ulg i zwolnień przez mikro-, małe i średnie przedsiębiorstwa. Wyniki badań pokazują, że system obowiązujących w Polsce preferencji podatkowych nie jest idealny. Ponadto, ze względu na wielokierunkowy zakres oddziaływania instrumentów podatkowych, ocena poszczególnych wdrożonych do systemu podatkowego rozwiązań jest zagadnieniem wielce skomplikowanym, a jednoznaczna ocena skuteczności oddziaływania – niejednokrotnie niemożliwa.


  • Ultra-Compact Self-Quadruplexing Microfluidically Frequency Reconfigurable Slot Antenna Using Half-Mode SIW
    • Rusan Kumar Barik
    • Sławomir Kozieł
    2024 AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS

    In this brief, the design of an ultra-compact self-quadruplexing frequency reconfigurable antenna (SQFRA) utilizing a half-mode substrate-integrated waveguide (HMSIW) and microfluidic channels is discussed. Four HMSIW cavities fed by four microstrip lines and slots are used to construct a highly compact antenna. The microstrip feedings to the HMSIW cavities are applied in such a way that the proposed antenna exhibits self-quadruplexing properties with good isolation. The working principle is explained by employing surface current densities, and an equivalent circuit model. In order to achieve frequency tunability, two or three empty sockets associated with each HMSIW cavity are drilled from the bottom plane and filled with dielectric fluids. The effect of height and locations of fluidic channels are discussed in detail. To validate the proposed tunability, a prototype of SQFTA is fabricated and demonstrated. The fabricated antenna provides frequency ranges of 16.46%, 17.84%, 11.99%, and 14.94% at the first, second, third, and fourth frequency bands, respectively. The SQFTA exhibits a small footprint of 0.084λg2, which makes it the most compact self-quadruplexing tunable antenna in the open literature. Furthermore, the fabricated antenna features high isolation greater than 24.7dB, and realized gain greater than 3.55 dBi at all the operating frequencies.


  • Ultrafast high-temperature sintering (UHS) of cerium oxide-based compound
    • Ahsanul Kabir
    • Bartłomiej Lemieszek
    • Jakub Karczewski
    • Emanuele De Bona
    • Maxim Varenik
    • Sebastian Molin
    • Mattia Biesuz
    2024 Full text Open Ceramics

    Ultrafast high-temperature sintering (UHS) is an innovative sintering technique that can densify ceramics in a few seconds, dramatically reducing the carbon footprint and firing costs. In this work, the feasibility of applying UHS in Gd-doped ceria (GDC) and GDC-Er-stabilized bismuth oxide (ESB) composite powders was investigated. At high UHS currents (22-24 A), a fully dense GDC sample with a large grain size was obtained. Nonetheless, most of the GDC pellets exhibited micro/macro cracks, which were reduced by lowering the sample thickness. Moreover, the GDC-ESB composite sample exhibits no cracks or fragmentation at all, thanks to ESB as a sintering aid. This type of sample was further characterized from an electrochemical and electromechanical point of view. The GDC-ESB material displays an ionic conductivity value of ~1.5 x 10−2 S/cm at 600 °C and frequency-stable (0.1-350 Hz) room temperature electrostriction strain coefficient of ~10−18 (m/V)2.