Pokaż publikacje z roku
-
Pokaż wszystkie publikacje z roku 2025
-
Pokaż wszystkie publikacje z roku 2024
-
Pokaż wszystkie publikacje z roku 2023
-
Pokaż wszystkie publikacje z roku 2022
-
Pokaż wszystkie publikacje z roku 2021
-
Pokaż wszystkie publikacje z roku 2020
-
Pokaż wszystkie publikacje z roku 2019
-
Pokaż wszystkie publikacje z roku 2018
-
Pokaż wszystkie publikacje z roku 2017
-
Pokaż wszystkie publikacje z roku 2016
-
Pokaż wszystkie publikacje z roku 2015
-
Pokaż wszystkie publikacje z roku 2014
-
Pokaż wszystkie publikacje z roku 2013
-
Pokaż wszystkie publikacje z roku 2012
-
Pokaż wszystkie publikacje z roku 2011
-
Pokaż wszystkie publikacje z roku 2010
-
Pokaż wszystkie publikacje z roku 2009
-
Pokaż wszystkie publikacje z roku 2008
-
Pokaż wszystkie publikacje z roku 2007
-
Pokaż wszystkie publikacje z roku 2006
-
Pokaż wszystkie publikacje z roku 2005
-
Pokaż wszystkie publikacje z roku 2004
-
Pokaż wszystkie publikacje z roku 2003
-
Pokaż wszystkie publikacje z roku 2002
-
Pokaż wszystkie publikacje z roku 2001
-
Pokaż wszystkie publikacje z roku 2000
-
Pokaż wszystkie publikacje z roku 1999
-
Pokaż wszystkie publikacje z roku 1998
-
Pokaż wszystkie publikacje z roku 1988
-
Pokaż wszystkie publikacje z roku 1987
-
Pokaż wszystkie publikacje z roku 1980
Publikacje z roku 2025
Pokaż wszystkie-
A review on hydrophobic electrospun nanofibers-based materials and membranes for water treatment: Challenges, outlook, and stability
- Farooque Janjhi
- Imamdin Chandio
- Dahar Janwery
- Vahid Vatanpour
- Roberto Castro Munoz
Membrane technology is well recognized as a dependable means of supplementing the availability of potable water through processes such as water purification and desalination. Electrospun nanofiber membranes have garnered significant attention because of their advantageous features, including a greater specific surface area, increased porosity, reduced thickness, and popularity. Consequently, ENMs have emerged as an up-and-coming contender in several applications. The various methods employed for fabrication involve inorganic deposition, polymer coating, and interfacial polymerization. Electrospun nanofiber membranes’ efficacy in removing diverse water pollutants, including heavy metals, dyes, and antibiotics, has been exceptional. The enhancement of polymer membrane performance can be achieved through the precise adjustment of polymer structure, manipulation of surface properties, and reinforcement of total membrane porosity. The study investigates the fundamentals of electrospun nanofibers and their utilization in electrospun nanofibrous membranes and composites for environmental remediation applications. The final section discusses the opportunities and significant challenges concerning the application of engineered nanomaterials in the water treatment sector. The advancement of engineered nanomaterials is anticipated to facilitate the growth and application of multiple industries, including water treatment and sustainability.
-
Activation of small molecules by ambiphilic NHC-stabilized phosphinoborenium cation: formation of boreniums with B–O–C, B–O–B, and B–O–P structural motifs
- Tomasz Wojnowski
- Anna Ordyszewska
- Hanna Halenka
- Iwona Anusiewicz
- Jarosław Chojnacki
- Kinga Kaniewska-Laskowska
- Rafał Grubba
The reactivity of the phosphinoborenium cation supported by a 1,3,4,5-tetramethylimidazolin-2-ylidene ligand toward small molecules was explored. The phosphinoborenium cation exhibited dual Lewis acid–base properties due to the presence of the Lewis acidic boron center and the Lewis basic phosphido ligand connected by a covalent bond. The reaction of the title cation with CO2 led to the insertion of a CO2 molecule into the P–B bond. The obtained borenium CO2-adduct underwent hydrolysis, forming an N-heterocyclic carbene stabilized diborenium dication bearing a B–O–B functionality. The activation of N2O proceeded via the insertion of an oxygen atom into the B–P bond of the parent cation, yielding a borenium cation with a phosphinite moiety. An alternative synthetic pathway to borenium cations with a B–O–P skeleton was achieved via the activation of secondary phosphine oxides by the phosphinoborenium cation. Furthermore, borenium cations and diborenium dications with B–O–C structural motifs were obtained from the reaction of the title compound with perfluorinated tert-butyl alcohol and hydroquinone, respectively. The structure of the obtained borenium cations is discussed based on multinuclear NMR spectroscopy, X-ray diffraction, and density functional theory calculations.
-
Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
- Farzin Kazemi
- Torkan Shafighfard
- Robert Jankowski
- Doo-Yeol Yoo
Conventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC) materials have recently received considerable attention. Following the emergence of advanced prediction techniques aimed at reducing experimental tools and labor costs, this study provides a comparative study of different methods based on machine learning (ML) algorithms to propose an active learning-based ML model (AL-Stacked ML) for predicting the compressive strength of AA-UHPC. A data-rich framework containing 284 experimental datasets and 18 input parameters was collected. A comprehensive evaluation of the significance of input features that may affect compressive strength of AA-UHPC was performed. Results confirm that AL-Stacked ML-3 with accuracy of 98.9% can be used for different general experimental specimens, which have been tested in this research. Active learning can improve the accuracy up to 4.1% and further enhance the Stacked ML models. In addition, graphical user interface (GUI) was introduced and validated by experimental tests to facilitate comparable prospective studies and predictions.
-
Advanced genetic algorithm-based signal processing for multi-degradation detection in steam turbines
- Marta Drosińska-Komor
- Jerzy Głuch
- Łukasz Breńkacz
- Michał Piotrowicz
- Paweł Ziółkowski
- Natalia Ziółkowska
This research contributes to the field of reliability engineering and system safety by introducing an innovative diagnostic method to enhance the reliability and safety of complex technological systems. Steam turbines are specifically referred to. This study focuses on the integration of advanced signal processing techniques and engineering dynamics in addressing critical issues in the monitoring and maintenance of mechanical systems. By utilizing genetic algorithms, we improve the capability to detect, localize, and ascertain the causes of both singular and intricate degradations, including three-fold and four-fold faults, within steam turbine operations. We can detect degradation with accuracies of 72.6% for three-fold faults and 62.2% for four-fold faults. This significant advancement emphasizes the potential for improved machine and structural health monitoring, especially where non-stationary and random vibrations are common, such as in powertrain and drivetrain systems. This methodology is vital for the maintenance and oper- ational strategies of critical infrastructures like nuclear power plants, chemical plants, and manufacturing facilities where steam turbines play a crucial role. The novelty of this approach lies in the use of genetic algorithms for thermal-flow diagnostics of steam turbines, which had been unaddressed in literature. Moreover, the merger of theoretical and experimental aspects in this study underscores its relevance to practical applications, thereby demonstrating an original contribution to engineering knowledge and showcasing significant advancements over estab- lished methods. The research underscores the method’s potential as a universal tool for diag- nosing complex systems, representing an advance in reliability engineering practices. By applying genetic algorithms, a noticeable link to improving the safety and reliability of technological systems is established, offering valuable insights into the design, maintenance, and extension of the lifespan of critical infrastructure.
-
AI-Driven Sustainability in Agriculture and Farming
- Julian Szymański
- Karolina Nurzyńska
- Paweł Weichbroth
In this chapter, we discuss the role of artificial intelligence (AI) in promoting sustainable agriculture and farming. Three main themes run through the chapter. First, we review the state of the art of smart farming and explore the transformative impact of AI on modern agricultural practices, focusing on its contribution to sustainability. With this in mind, our analysis focuses on topics such as data collection and storage, AI algorithms in agriculture, and optimization areas. We also present recent advances in agricultural technology and equipment used to develop a wide range of production methods used by modern farmers. We discuss agri-environmental monitoring, which refers to the real-time or periodic monitoring and assessment of environmental components in agricultural production. Specifically, five types of environmental monitoring are presented, viz: air quality monitoring, water sampling and analysis, noise level testing, soil quality testing, and microbial monitoring. We also discuss weather forecasting, one of the most challenging scientific endeavors. The chapter concludes with applications for monitoring and managing environmental impacts and explores future trends and innovations based on cutting-edge research and emerging technologies.
-
An experimental EEG study of brain activities underlying the Autonomous Sensory Meridian Response
- Ali Mohammadi
- Sahar Seifzadeh
- Fatemeh Torkamani
- Sina Salehi
Autonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed. However, the neural activity underlying this phenomenon is not yet well-studied. The present study aims to investigate this issue using electroencephalography (EEG) employing an exploratory approach. We recorded resting-state EEGs from twelve participants before and after watching an ASMR clip and a control video clip. We divided the participants into two groups capable of experiencing ASMR tingling (ASMR group) and not capable of experiencing ASMR tingling (Non-ASMR group), by performing “Jenks Natural Breaks” clustering method on the results of a self-report questionnaire. We calculated the spectral power of EEG recording and compared the resulting values between the groups and sessions. We demonstrated a decline in the power of EEG activities in the delta frequency band in all regions of the brain and an increase in alpha activity in the occipital area of the brain and increases in beta oscillations was noted over the left fronto-temporal region of the brain among ASMR group. We did not observe similar results among the Non-ASMRs participants or among ASMRs in the control group.
-
An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers
- Morteza Akbari
- Abbas-Ali Zamani
- Mohammad Seifi
- Bartolomeo Pantò
- Tomasz Falborski
- Robert Jankowski
This paper presents an optimal nonlinear fractional-order controller (ONFOC) designed to reduce the seismic responses of tall buildings equipped with a base-isolation (BI) system and friction-tuned mass dampers (FTMDs). The parameters for the BI and FTMD systems, as well as their combinations (BI-FTMD and active BI-FTMD or ABI-FTMD), were optimized separately using a multi-objective quantum-inspired seagull optimization algorithm (MOQSOA). The seismic performances of the BI, FTMD, BI-FTMD, and ABI-FTMD systems for a 15-storey building subjected to two far-field (Loma Prieta and Landers) and two near-fields (Tabas and Northridge) earthquakes were evaluated. The results indicated that structures with BI, FTMD, BI-FTMD, and ABI-FTMD systems outperformed the uncontrolled structure in reducing structural responses during the design earthquakes (Loma Prieta and Tabas). However, under validation earthquakes (Landers and Northridge), the peak acceleration of the building with the FTMD system was worse than that of the uncontrolled structure during the near-field Northridge earthquake. To address this issue, we proposed a combination of the active BI system and the FTMD system. Time history analysis results demonstrated that for the building equipped with the ABI-FTMD system, the peak displacement, peak acceleration, and peak inter-storey drift were reduced by approximately 60%, 64%, and 78%, respectively, as compared to the uncontrolled structure.
-
Applications of nanosorbents in dispersive solid phase extraction/microextraction approaches for monitoring of synthetic dyes in various types of samples: A review
- Wajid Ali Khan
- Pakorn Varanusupakul
- Hameed Haq
- Muhammad Balal Arain
- Grzegorz Boczkaj
Nanosorbents are frequently used in analytical chemistry for their various applications, including extraction and microextraction of synthetic dyes. Synthetic dyes pose a threat to living organisms, particularly humans, due to their worldwide use in a variety of industries. The removal and quantification of synthetic dyes from various matrices is becoming increasingly important. The use of nanosorbents in dispersive solid phase extraction/microextraction (DSPE/DSPME) based approaches are considered the most sensitive and effective techniques for the preconcentration of synthetic dyes due to its high sample clean-up capability, low usage of solvents, high enrichment (preconcentration) factors assuring low detection limits (LOD) of the overall analytical procedures. This review describes widely used nanosorbents, their key properties, and sorption capability, as well as progress and challenges in popular DSPE/DSPME methods and their types, including magnetic solid phase extraction/microextraction (MSPE/MSPME), dispersive micro-solid phase extraction (D-µ-SPE), and ultrasound-assisted dispersive solid phase extraction/microextraction (UA-DSPE/UA-DSPME) for extraction and quantification of dyes. Nanomaterials synthesis methods are typically divided into bottom-up and top-down methods. Bottom-up techniques include hydrothermal, sol–gel, laser pyrolysis, sonochemical, chemical reduction, inert gas condensation (IGC), co-precipitation, and chemical vapor deposition (CVD). Hydrothermal and CVD are the most commonly used. These methods have several advantages, including low cost, the ability to synthesize with a more controlled design, and the release of low waste. However, suffers from ensuring reproducibility and large-scale production. Top-down techniques involve reducing the size of the bulk material to create nanomaterials. The top-down approaches include electrospinning, laser ablation, etching, mechanical milling, thermal decomposition, and sputtering. The analytical instrumental technique is used to perform the final quantitative analysis step in these microextraction-based methods. The most common analytical instruments used with these sorbent-based microextraction techniques are UV–visible spectrophotometers, HPLC with UV/DAD , and LC-MS. Among the available methods, dedicated procedures for analysis of popular dyes such as Sudan dyes, sunset yellow, malachite green, methylene blue, crystal violet, tartrazine, and azo dye were developed.
-
CeO2/La2O3/MWCNTs as an efficient nano-electrocatalyst for use in the anode of alcohol fuel cells
- Mohammad Bagher Akari
- Parisa Salarizadeh
- Mohammad Taghi Tourchi Moghadam
- Sadegh Azizi
One of the most important challenges in commercializing Direct Alcohol Fuel Cells (DAFCs) is the significant expense of advanced catalysts used in their anodes and cathodes and the CO poisoning of these catalysts with alcohol oxidation by-products. Alcohols oxidation reaction occurred in the anode of DAFCs. Within this study, a tripartite catalyst, comprising cerium oxide (CeO2) and lanthanum oxide (La2O3) integrated with multi-walled carbon nanotubes (MWCNTs), was synthesized through the one-step hydrothermal. The lattice configuration and form of CeO2/La2O3/MWCNTs and CeO2/La2O3 catalysts were scrutinized, alongside their efficacy in facilitating alcohol oxidation. In the methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR) processes, the CeO2/La2O3/MWCNTs nanocatalyst demonstrated an oxidation current density of 74.4 mA/cm2 at 0.55 V and 52.1 mA/cm2 at 0.64 V in scan rate of 60 mV/s, respectively. CeO2/La2O3/MWCNTs also demonstrated 98.6 % and 97.7 % stability in current density after 2000 CV cycles in the MOR and EOR processes. The inclusion of MWCNTs bolstered the catalytic reaction of the catalyst in terms of stability and current density. This proposed nano-electrocatalyst offers a novel, cost-effective, and stable alternative in contrast to methanol and ethanol oxidation.
-
Declarative ship arenas under favourable conditions
- Filip Zarzycki
- Mateusz Gil
- Jakub Montewka
- Rafał Szłapczyński
- Joanna Szłapczyńska
According to maritime regulations, a collision-avoidance action shall be taken at an “ample time” while strict interpretation of this term is ambiguous. Evasive manoeuvres, executed by marine navigators on a daily basis, are usually carried out well in advance, while the distance at which they decide to perform such a manoeuvre is mostly subjective and results, e.g., from the navigator's seagoing experience. A proper understanding of the decision-maker's behaviour under favourable conditions, when time pressure does not exist, seems to be essential for the future of maritime safety. This could enable the translation and quantification of seafarers' routine actions, taken many times a day, into collision-avoidance algorithms suitable for Decision Support Systems (DSS) or Maritime Autonomous Surface Ships (MASS). The literature lacks extensive research on this subject, as it focuses mainly on safety-critical actions, which are important but rare events. Therefore, this study aims to fill this gap by surveying practitioners and extracting their expert knowledge. Based on an online survey, the declarative ship arenas, reflecting the distance of evasive manoeuvre initiation, were determined and analysed. The findings revealed that, depending on the participants' profiles, a range of responses among the groups reaches up to 2 NM. The results indicated that navigators become less consistent with growing experience. Determined declarative arenas were consequently incorporated into a simulation-based case study of a passenger ship. The conducted simulations indicated that for several scenarios, the passing distances resulting from the execution of an evasive manoeuvre as per declarative arena were less than 0.5 NM, potentially leading to dangerous situations at close range. This results most likely from an overall problem of translating the distance of manoeuvre initiation into the final passing distance. The findings of this research may be found interesting by shipping companies preparing bridge procedures or for scholars and industry representatives preparing intelligent collision-avoidance solutions for maritime transportation.
-
Development of an asymmetric cellulose acetate-ionic liquid P6,6,6,14[PHOS] gel membrane for the perstraction of succinic acid from a model fermentation solution of yarrovia lipolytica
- Elsie Zurob
- Esteban Quijada-Maldonado
- Roberto Castro Munoz
- Julio Romero
- Andrea Plaza
- René Cabezas
This study introduces a novel approach to separate succinic acid (SA) from fermentation mixtures using an asymmetric membrane based on the gelation of the ionic liquid [P6,6,6,14][PHOS] coated with two layers of cellulose acetate. The membrane was designed to explore the synergistic effect of polymer-ionic liquid interfaces according to the solution-diffusion theory. The gelation of the ionic liquid was achieved using 12-hydroxystearic acid at a concentration of 1.5%, allowing the use of ionic liquid gels as new materials for the generation of membranes. The perstraction performance of the membrane was evaluated over 5 h at two different temperatures (25°C and 37°C), with an initial feed solution concentration of 50 kg m−3 for SA and glycerol and pure water as a receiving phase., Several flow rates and phase-volume ratios were studied anda mass transfer model based on the resistance-in-series theory was assessed to understand the behavior of each mass transfer stage considering the distribution in each interphase. Interestingly, optimal perstraction results were obtained at 37°C, with an average transmembrane flux of 0.22 kg m-2h−1 for SA, an extraction percentage of 43.1% for SA and 0.7% for glycerol, and a SA/glycerol selectivity of 54.98. Besides presenting a novel composite membrane, this study reports pioneering perstraction outcomes, highlighting its potential as an innovative SA separation strategy and structured new materials for selective extractions.
-
Distinct cellular uptake patterns of two anticancer unsymmetrical bisacridines and their metabolic transformation in tumor cells.
- Joanna Frąckowiak
- Paweł Kubica
- Michał Kosno
- Agnieszka Potęga
- Katarzyna Owczarek-Grzymkowska
- Julia Borzyszkowska-Bukowska
- Tomasz Laskowski
- Ewa Paluszkiewicz
- Zofia Mazerska
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents. Their high cytotoxicity towards multiple human cancer cell lines and inhibition of human tumor xenograft growth in nude mice signal their potential for cancer treatment. Therefore, the mechanism of their strong biological activity is broadly investigated. Here, we explore the efflux and metabolism of UAs, as both strongly contribute to the development of drug resistance in cancer cells. We tested two highly cytotoxic UAs, C‑2028 and C‑2045, as well as their glucuronic acid and glutathione conjugates in human cancer cell lines (HepG2 and LS174T). As a point of reference for cell-based systems, we examined the rate of UA metabolic conversion in cell-free systems. A multiple reaction monitoring (MRM)-mass spectrometry (MS) method was developed in the present study for analysis of UAs and their metabolic conversion in complex biological matrices. Individual analytes were identified by several features: their retention time, mass‑to‑charge ratio and unique fragmentation pattern. The rate of UA uptake and metabolic transformation was monitored for 24 h in cell extracts and cell culture medium. Both UAs were rapidly internalized by cells. However, C‑2028 was gradually accumulated, while C‑2045 was eventually released from cells during treatment. UAs demonstrated limited metabolic conversion in cells. The glucuronic acid conjugate was excreted, whereas the glutathione conjugate was deposited in cancer cells. Our results obtained from cell-free and cell-based systems, using a uniform MRM‑MS method, will provide valuable insight into the mechanism of UA biological activity in diverse biological models.
-
Diverse roles, advantages and importance of deep eutectic solvents application in solid and liquid-phase microextraction techniques – A review
- Wajid Ali Khan
- Pakorn Varanusupakul
- Hameed Ul Haq
- Muhammad Balal Arain
- Mateusz Marchel
- Grzegorz Boczkaj
Deep eutectic solvents (DESs) are an emerging class of promising green solvents used as an alternative to traditional organic solvents in various scientific fields. The high biodegradability, biocompatibility, eco-friendliness, tunable properties, and presence of active groups in DESs make them the preferred solvent in a variety of solid- and liquid-phase microextraction techniques. Aside from these benefits, the use of DESs in microextraction techniques results in increased selectivity, extraction efficiency, recovery, analyte stabilization capability, and detection compatibility. Furthermore, the ease of preparation, low cost, readily available components, separation, and applications for a wide range of samples drew significant attention. Based on these benefits, the chemists investigate the application of DESs in separation science for various roles. Based on the advantages of DESs in separation science, this review investigates and describes the various roles of DESs, including sorbent functionalization, desorption solvent, dispersing solvent, reaction media, extraction solvent, solvent for supported liquid membrane (SLM), and acceptor phase in various solid- and liquid-phase microextraction techniques for a variety of matrices, including food, water, soil, plants, beverages, medicinal supplements, and biological samples. Aside from the numerous advantages, the use of DESs for various roles in sorbent-based microextraction techniques reduces extraction performance due to variable complex interaction with the analyte, instability in extreme pH and high-temperature conditions, and insufficient analyte solubility. Furthermore, some physiochemical properties of DESs, such as viscosity, conductivity, and leakage into sample and acceptor solvents, limited their use in membrane-based microextraction methods. Future research should concentrate on developing comprehensive models that accurately describe the physiochemical properties of DESs and their intended role in microextraction techniques. The authors also suggest stabilizing agents in conjunction with DESs to improve extraction stability.
-
Effects of aggregate crushing and strain rate on fracture in compressive concrete with a DEM-based breakage model
- Michał Nitka
- Andrzej Tejchman-Konarzewski
W tym artykule zbadano, w jaki sposób kruche kruszywa wpływają na mezoskopowe zachowanie dynamiczne betonu w warunkach jednoosiowego ściskania. Przeprowadzono obszerne dynamiczne obliczenia dwuwymiarowe (2D), aby zbadać wpływ kruszenia kruszywa i szybkości odkształcania na dynamiczną wytrzymałość betonu i wzory pęknięć. Wykorzystując model pękania oparty na DEM, beton symulowano jako materiał czterofazowy składający się z kruszywa, zaprawy, ITZ i makroporów. Mezostrukturę betonu uzyskano z laboratoryjnych testów mikro-CT. Zbiory kulistych cząstek wykorzystano do imitacji pękania kruszywa o różnych rozmiarach i kształtach, umożliwiając między nimi pękanie wewnątrzziarniste. Zaprawę opisano w kategoriach niełamliwych kul o różnych średnicach. W porównaniu z zaprawą wytrzymałość kruszywa była zawsze większa. Uzyskano jakościową spójność wyników DEM z dostępnymi danymi eksperymentalnymi. Dynamiczna wytrzymałość betonu na ściskanie wzrosła znacząco wraz ze szybkością odkształcania i nieznacznie wraz z wytrzymałością kruszywa. Proces pękania był znacząco zależny od kruszenia kruszywa i szybkości odkształcenia. Liczba zerwanych styków rosła wraz ze wzrostem szybkości odkształcenia i spadkiem wytrzymałości kruszywa.
-
Electrifying the bus network with trolleybus: Analyzing the in motion charging technology
- Mikołaj Bartłomiejczyk
- Priscilla Caliandro
Currently, electric buses are becoming more and more popular, and their number in operation is increasing. The range of electric buses is also increasing and solutions that seem to be working almost without fixed infrastructure are being promised. However, this requires the use of high-capacity batteries, which increases the weight and price of the vehicle and causes high costs of battery replacement during operation. Moreover, if we take into account the growing demand for batteries, limited raw material resources, and the environmental impact of the battery production process, the optimization of battery capacity in vehicles may turn out to be a key issue. In this light, trolleybus becomes a sustainable and economically efficient bus electrification technology, if considered in an international scope and a medium- to long-term approach. The article provides a comprehensive study of challenges and potential solutions related to electric buses, which covers the theoretical analysis, technical aspects and practical applications, thus making a valuable resource for readers interested in sustainable urban transport systems. It presents the trolleybus technology, especially with modern solutions, as a sustainable and economically efficient tool for bus electrification. The article shows that the In Motion Charging (IMC) system reduces the need for high-capacity batteries under 100 kWh, which allows to extend their service life up to 15 years and, consequently, to reduce the number of buses needed for operation. The research was based on real measurement data from the transport system in Gdynia (Poland).
-
Enhanced electrochemical capacitance of TiO2 nanotubes/MoSe2 composite obtained by hydrothermal route
- Mariusz Szkoda
- Anna Ilnicka
This study presents the hydrothermal synthesis of a novel TiO2 nanotubes/MoSe2 nanocomposite and investigates its enhanced electrochemical capacitance properties. The composite material was fabricated through a hydrothermal method, embedding MoSe2 onto TiO2 nanotubes. The resulting composite, termed Ti/TiO2/MoSe2, exhibited significantly improved electrochemical capacitance compared to TiO2 nanotubes alone. The synthesized composite was comprehensively characterized using solid-state physics techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These analyses provided detailed insights into the structural and chemical composition of the TiO2/MoSe2 nanocomposite. The investigation revealed that the TiO2/MoSe2 nanocomposite displayed superior electrochemical performance, as determined by various electrochemical methods. Notably, the composite exhibited a capacitance approximately 10 times higher than that of pristine TiO2 nanotubes. These findings underscore the significant enhancement in energy storage capabilities achieved through the hydrothermal synthesis of TiO2/MoSe2. The observed enhancement in capacitance positions the TiO2/MoSe2 nanocomposite as a promising candidate for high-performance energy storage applications.
-
Evaluation of overstrength-based interaction checks for columns in steel moment frames
- Tomasz Falborski
- Greta Murtas
- Ahmed Elkady
- Dimitrios Lignos
- Amit Kanvinde
Current design guidelines in the United States require a check for only column axial force under overstrength seismic loads for capacity-designed steel moment frames. A study is presented to examine the implications of this guidance, which disregards the column interaction check (including both axial force and moment) under overstrength seismic loads. A set of thirteen steel moment frames are designed using multiple rules that apply and disregard overstrength, drift, and cross-sectional compactness checks in various combinations. The frames are subjected to a suite of simulations including linear elastic, nonlinear static pushover, nonlinear response history, and continuum finite element simulations that are able to represent a range of physical behavior modes in the columns including interactive nonlinear geometric instabilities that could trigger loss of the load carrying capacity of the member. The simulations indicate no significant distinction between the seismic performance of steel moment resisting frames designed as per current code-based provisions (i.e., disregarding the column interaction check for overstrength seismic loads), and those designed with the use of the interaction check, with each providing acceptable response without failure. The simulations also indicate that design checks for drift and cross-sectional compactness play a significant role ensuring acceptable response, providing additional margin of safety beyond the member strength checks.
-
Follow-up assessment of the microvascular function in patients with long COVID
- Marzena Romanowska-Kocejko
- Alicja Braczko
- Agata Jędrzejewska
- Marta Żarczyńska-Buchowiecka
- Tomasz Kocejko
- Barbara Kutryb-zając
- Marcin Hellmann
Long COVID is a complex pathophysiological condition. However, accumulating data suggests that COVID-19 is a systemic microvascular endothelial dysfunction with different clinical manifestations. In this study, a microvascular function was assessed in long COVID patients (n = 33) and healthy controls (n = 30) using flow-mediated skin fluorescence technique (FMSF), based on measurements of nicotinamide adenine dinucleotide fluorescence intensity during brachial artery occlusion (ischemic response, IR) and immediately after occlusion (hyperemic response, HR). Microcirculatory function readings were taken twice, 3 months apart. In addition, we quantified biochemical markers such as the serum L-arginine derivatives and hypoxia-inducible factor 1α (HIF1α) to assess their relation with microvascular parameters evaluated in vivo. In patients with long COVID, serum HIF1α was significantly correlated to IRindex (r = −0.375, p < 0.05). Similarly, there was a significant inverse correlation of serum asymmetric dimethyl-L-arginine levels to both HRmax (r = −0.343, p < 0.05) and HRindex (r = −0.335, p < 0.05). The IR parameters were found lower or negative in long COVID patients and recovered in three-month follow-up. Hypoxia sensitivity value was significantly higher in long COVID patients examined after three months of treatment based on the combination of ACE-inhibitors and beta-adrenolytic compared to baseline condition (85.2 ± 73.8 vs. 39.9 ± 51.7 respectively, p = 0.009). This study provides evidence that FMSF is a sensitive, non-invasive technique to track changes in microvascular function that was impaired in long COVID and recovered after 3 months, especially in patients receiving a cardioprotective therapy.
-
Gold(III) complexes with chloride and cyanopyridines: Facilitated hydrolysis of nitrile ligand to amide and antibacterial activity
- Maciej Ejnik
- Piotr Bruździak
- Karolina Gutmańska
- Anna Ciborska
- Magdalena Malik
- Dietrich Gudat
- Anna Brillowska-Dąbrowska
- Anna Dołęga
A range of novel simple gold(III) compounds has been synthesized in their monocrystalline form, including two previously unknown chloro-complexes of Au3+ with 2-cyanopyridine or 3-cyanopyridine, respectively. Our investigations have revealed the intricate nature of the reaction between 2-cyanopyridine and tetrachloroauric acid, yielding at least three distinct products. The main product, obtained in high yield, is a salt featuring a tetrachloroauric anion and a pyridinium cation stabilized by a hydrogen bond to a further 2-cyanopyridine molecule. Moreover, we observed the in-situ formation of a 2-cyanopyridine-AuCl3 complex, which undergoes hydrolysis of the nitrile bond to yield a picolinamide-Au(III) complex. The complexes were characterized by IR and Raman spectroscopies, NMR spectroscopy, and single-crystal XRD studies. Additional computational studies were conducted to explain unusual spectral features, the observed disparities in the complexation reactions of the three isomeric cyanopyridine ligands and the distinct reactivity of the complex with 2-cyanopyridine. Based on these studies, we propose a mechanism for the catalyzed hydrolysis of the nitrile bond within the Au(III) complex. Finally, we assessed the antimicrobial efficacy of the synthesized gold(III) complexes against a spectrum of bacteria and fungi.
-
Investigating the suitability of the matched fiber Bragg grating approach for guided wave based structural health monitoring
- Rohan Soman
- Farzam Omidi Moaf
- Piotr Fiborek
- Pawel Kudela
- Marzena Kurpińska
Fiber Bragg grating (FBG) sensors are thought to be ideal sensors for structural health monitoring (SHM). Amplitude based techniques such as matched filters and the edge-filtering have been proposed to fulfill the high sampling rates necessary for guided waves (GW) sensing. The current research for the first time shows the inherent robustness the matched filter technique provides to the sensing system. The matched system is realized through a FBG deployed on a low cost micrometer screw gauge which allows flexibility in matching the reflected wavelengths of the FBGs. Based on the results it is shown that, in the remote configuration the matched FBG approach is robust under changing temperature conditions. This concept has been shown analytically and experimentally. Furthermore, the approach is then extended for multiplexing of the sensors and the deployed system is used for detecting and localizing damage in the plate.