Publications Repository - Gdańsk University of Technology

Page settings

polski
Publications Repository
Gdańsk University of Technology

Publications from the year 2024

Show all
  • Comprehensive evaluation of physical properties and carbon dioxide capacities of new 2-(butylamino)ethanol-based deep eutectic solvents
    • Bartosz Nowosielski
    • Marzena Jamrógiewicz
    • Iwona Cichowska-Kopczyńska
    • Dorota Warmińska
    2024 PURE AND APPLIED CHEMISTRY

    The aim of this research was to assess the impact of the components of alkanolamine deep eutectic solvents (DESs) on the physical properties of those DESs and their carbon dioxide capacity. To achieve this goal, novel deep eutectic solvents were synthesized by using 2-(butylamino)ethanol (BAE) as the hydrogen bond donor (HBD), along with tetrabutylammonium bromide TBAB), tetrabutylammonium chloride (TBAC), or tetraethy- lammonium chloride (TEAC) as the hydrogen bond acceptors (HBA) at various molar ratios (1:6, 1:8, and 1:10). To confirm the presence of hydrogen bond interactions between the components Fourier Transform Infrared Spectroscopy measurements were conducted. Furthermore, thermal properties, including melting points and thermal stability, of these deep eutectic solvents as well as key physical properties, such as density, viscosity, refractive index, and sound velocity, within the temperature range of 293.15–333.15 K and at a pressure of 0.1 MPa were examined. The effect of the molar ratio of HBA to HBD, the type of anion, and the length of the alkyl chain were studied and analysed in regard to physicochemical properties. In this work, the solubility of carbon dioxide in DESs derived from 2-(butylamino)ethanol, 3-aminopropan-1-ol (AP), and 2-(methylamino)ethanol (MAE) was measured. The highest CO 2 capacity was found for TEAC:MAE 1:10 DES characterized by the shortest alkyl chain length in both HBA and HBD molecules, the highest amine content, and the lowest viscosity. Additionally, the effect of water addition on carbon dioxide solubility was explored. The results showed that the influence of water on CO 2 solubility varies with the type of DES. In general, this work highlighted that DESs can serve as effective media for carbon dioxide capture, and their performance can be tailored by changing the type of hydrogen bond acceptor or donor, their molar ratio and by the addition of water.


  • Comprehensive exploration of technological tensioning effects in welded thin plate girders: an in-depth investigation
    • Hassanein I. Khalaf
    • D. Chodorowska
    • Raheem Al-Sabur
    • Andrzej Kubit
    • Wojciech Macek
    2024 Journal of the Brazilian Society of Mechanical Sciences and Engineering

    Thin-walled plate girders are widely used in structures and construction due to their effectiveness in transferring loads. The permanent deformations of the girder lead to a lack of stability, which necessarily leads to its replacement. Replacing permanently deformed thin-walled load-bearing structures requires large financial outlays. Technological prestressing is one of the most effective methods for studying and treating permanent deflections in girder elements. This study looks at the defection of welded thin-plate S235JR steel girders, examining how technological tensioning effects interact with different loading conditions. Four girders, A2 (welded in bottom caps), A3 (welded in two side caps), and A4 (welded in two side caps and bottom caps), as well as the prestressed B2 girder, which has two welded side caps, were subjected to a bend test. The girders were subjected to a load P (20, 40, 60, 80 and 95) kN. All points were examined during the 95 min of cooling time. For technological compression, the results showed that there is a convergence between the analytical solution and the experimental results, as the most significant deviation achieved in the analysis was 5.21 mm compared to 6 mm experimentally. When the girder is loaded with the force P = 50 N, the maximum deflection achieved at girder A4 is 4 mm, compared with 1mm at girder A2. In prestressed girder B, the deflections that were reached were 2.50 mm, 3.50 mm, and 3.52 mm in the analytical, experimental, and FE numerical models, respectively. The tensions that were reached were 36.96 MPa, 44.28 MPa, and 27.93 MPa.


  • Computational analysis of power-law fluids for convective heat transfer in permeable enclosures using Darcy effects
    • Maryam Rehman
    • Muhammad Bilal Hafeez
    • Marek Krawczuk
    2024 Full text JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY

    Natural convection is a complex environmental phenomenon that typically occurs in engineering settings in porous structures. Shear thinning or shear thickening fuids are characteristics of power-law fuids, which are non-Newtonian in nature and fnd wide-ranging uses in various industrial processes. Non-Newtonian fuid fow in porous media is a difcult problem with important consequences for energy systems and heat transfer. In this paper, convective heat transmission in permeable enclosures will be thoroughly examined. The main goal is to comprehend the intricate interaction between the buoyancyinduced convection intensity, the porosity of the casing, and the fuid’s power-law rheology as indicated by the Rayleigh number. The objective is to comprehend the underlying mechanisms and identify the ideal conditions for improving heat transfer processes.The problem’s governing equations for a scientifc investigation are predicated on the concepts of heat transport and fuid dynamics. The fuid fow and thermal behavior are represented using the energy equation, the Boussinesq approximation, and the Navier–Stokes equations. The continuity equation in a porous media represents the conservation of mass. Finite Element Analysis is the numerical method that is suggested for this challenging topic since it enables a comprehensive examination of the situation. The results of the investigation support several important conclusions. The power-law index directly impacts heat transmission patterns. A higher Rayleigh number indicates increased buoyancyinduced convection, which increases the heat transfer rates inside the shell. The porosity of the medium signifcantly afects temperature gradients and fow distribution, and it is most noticeable when permeability is present. The fndings show how, in the context of porous media, these parameters have complicated relationships with one another


  • Computational analysis of substituent effects on proton affinity and gas-phase basicity of TEMPO derivatives and their hydrogen bonding interactions with water molecules
    • Abolfazl Shiroudi
    • Maciej Śmiechowski
    • Jacek Czub
    • Mohamed A. Abdel-Rahman
    2024 Full text Scientific Reports

    The study investigates the molecular structure of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives in the gas phase using B3LYP and M06-2X functional methods. Intermolecular interactions are analyzed using natural bond orbital (NBO) and atoms in molecules (AIM) techniques. NO2-substituted TEMPO displays high reactivity, less stability, and softer properties. The study reveals that the stability of TEMPO derivatives is mainly influenced by LP(e) → σ∗ electronic delocalization effects, with the highest stabilization observed on the oxygen atom of the nitroxide moiety. This work also considers electron density, atomic charges, and energetic and thermodynamic properties of the studied NO radicals, and their relative stability. The proton affinity and gas-phase basicity of the studied compounds were computed at T = 298 K for O-protonation and N-protonation, respectively. The studied DFT method calculations show that O-protonation is more stable than N-protonation, with an energy difference of 16.64–20.77 kcal/mol (22.80–25.68 kcal/mol) at the B3LYP (M06-2X) method. The AIM analysis reveals that the N–O…H interaction in H2O complexes has the most favorable hydrogen bond energy computed at bond critical points (3, − 1), and the planar configurations of TEMPO derivatives exhibit the highest EHB values. This indicates stronger hydrogen bonding interactions between the N–O group and water molecules.


  • Computational Approach towards Repetitive Design Tasks: The Case Study of Parking Lot Automated Design
    • Jan Cudzik
    • Michał Nessel
    2024 Full text Sustainability

    The study aims to develop and assess an algorithm for efficiently generating parking spot layouts within predefined area outlines. The algorithm is an attempt to streamline the decisionmaking process by producing different design variants and optimizing the utilization of available space. The algorithm’s primary objective is to streamline decision-making by generating diverse design variants while optimizing the use of available space, with a distinct focus on mitigating environmental impact and fostering ecological well-being. Researchers conduct thorough tests on the algorithm across various outlines, resulting in multiple layout options for each scenario. They analyzed five representative parking locations and compare the algorithm’s results with the existing parking spot layouts. Throughout the evaluation process, they consider quantitative and qualitative data, considering the complexities of communication solutions within each context. The study findings indicate that the algorithm demonstrates comparable or superior performance to existing solutions. Overall, the study highlights the promising potential of algorithmic design approaches in the context of parking lot automated design. Achieving a balance between innovative designs and user-friendly layouts is crucial, and this is achievable by conducting comprehensive analyses that consider various factors. The consistent findings underscore the algorithm’s potential to significantly contribute to sustainable design practices in parking lot layouts, highlighting decreased environmental strain, efficient land use, and creating urban spaces that prioritize ecological benefits. Furthermore, seamlessly integrating algorithmic solutions with existing communication systems is paramount to ensure practical applicability in real-world scenarios. This integration will enable more effective and practical implementation of the algorithm’s outputs in actual parking lot design projects.


  • Computational Bar Size Optimization of Single Layer Dome Structures Considering Axial Stress and Shape Disturbance
    • Ahmed Manguri
    • Najmadeen Saeed
    • Farzin Kazemi
    • Neda Asgarkhani
    • Marcin Szczepański
    • Robert Jankowski
    2024

    A computational method is proposed in this paper to minimize the material usage in the construction of modern spatial frame structures by prestressing a minimal number of members. The computational optimization is conducted in two steps. Firstly, a numerical model of a single-layer dome structure is used to minimize the cross-sectional area through several iterations. Different assumed ratios (r) ranging from 0.95 to 0.75 are multiplied by the designed cross-sectional area, and the optimal actual ratio (R) is determined through multiple steps using MATLAB. The selection of the optimum ratio is based on ensuring structural stability and considering various constraints. Secondly, a computational optimization is performed using the fmincon function in MATLAB, which employs an interior-point optimization algorithm to search for the minimum summation of the function. The algorithm is designed to exclude actuators with negligible actuation, thereby minimizing the number of actuators. Constraints are set on the stress of all members and the nodal displacements to maintain the desirable shape of the optimized structure. The obtained results demonstrate that the cross-sectional area of the numerical dome structure can be reduced by up to 18% by prestressing only nine members. The validity of the results is confirmed by comparing them with those obtained from MATLAB and SAP2000 software.


  • Computational modelling of historic masonry railroad arch bridges
    • Bartosz Sobczyk
    • Łukasz Pyrzowski
    • Mikołaj Miśkiewicz
    2024 COMPUTERS & STRUCTURES

    The problems encountered during the analyzes of structural response of historic masonry railroad arch bridges are described in this paper. The attention is mainly focused on the stiffness of the masonry arches, their strengths and appropriate estimation of railroad load intensity. Issues related to computational modelling of two, existing, almost 130 years old masonry arch railroad bridges are presented in this context. The main properties and results of detailed inspection of the structures are shown. Computational models that were created in the finite element method environment in order to efficiently describe the responses of the bridges under typical loading conditions and estimate their load carrying abilities are presented. The outcomes of several nonlinear static analyses that were conducted for this purpose are discussed. What is more the results of finite element analyses are reviewed against the inspected bridge condition and final conclusions are formulated on that basis. All the analyses allowed to find the possible causes of the deterioration of the bridges condition.


  • Computational Study of Molecular Interactions in ZnCl2(urea)2 Crystals as Precursors for Deep Eutectic Solvents
    • Adrian Malinowski
    • Maciej Śmiechowski
    2024 Crystals

    Deep eutectic solvents (DESs) are now enjoying an increased scientific interest due to their interesting properties and growing range of possible applications. Computational methods are at the forefront of deciphering their structure and dynamics. Type IV DESs, composed of metal chloride and a hydrogen bond donor, are among the less studied systems when it comes to their understanding at a molecular level. An important example of such systems is the zinc chloride–urea DES, already used in chemical synthesis, among others. In this paper, the ZnCl2(urea)2 crystal is studied from the point of view of its structure, infrared spectrum, and intermolecular interactions using periodic density functional theory and non-covalent interactions analysis. The two main structural motifs found in the crystal are a strongly hydrogen-bonded urea dimer assisted by chloride anions and a tetrahedral Zn(II) coordination complex. The crystal is composed of two interlocking parallel planes connected via the zinc cations. The infrared spectrum and bond lengths suggest a partially covalent character of the Zn–Cl bonds. The present analysis has far-reaching implications for the liquid ZnCl2–urea DES, explaining its fluidity, expected microstructure, and low conductivity, among others.


  • Concept of Multifactor Method and Non-Functional Requirements Solution to Increase Resilience through Functional Safety with Cybersecurity Analysis
    • Emilian Piesik
    • Marcin Śliwiński
    • Narayanan Subramanian
    • Janusz Zalewski
    2024 Full text Eksploatacja i Niezawodność - Maintenance and Reliability

    In the process of designing safety systems, an integrated approach in safety and cybersecurity analysis is necessary. The paper describes a new technique of increasing resilience through integrated analysis of functional safety and cybersecurity. It is a modeling methodology based on the combination of the multifactor method utilizing modified risk graphs, used previously for Safety Integrity Level (SIL) assessment, and the Non-Functional Requirements (NFR) approach. The NFR approach, based on the analysis of graphical representation of conceptual and physical components of the system, contributes a technique to include cybersecurity through the Softgoal Interdependency Graph. The assessment methodology is outlined in detail and applied to a case study involving an industrial control system. The analysis turns out to be effective in both aspects: confirming the findings of the multifactor approach based on modified risk graphs and complementing the traditional analysis to increase resilience in discovering and mitigating security vulnerabilities for SIL assessment by the use of NFR


  • Consideration of Pseudo Strain Energy in Determination of Fatigue Life and Microdamage Healing of Asphalt Mastics
    • Dawid Ryś
    • Cezary Szydłowski
    2024 INTERNATIONAL JOURNAL OF FATIGUE

    Rest periods between cyclic loads can lead to recovery of damage and extension of fatigue life. This phenomenon is referred to as healing. Healing is clearly observed in bituminous materials, such as asphalt mastics, which belong to the components of asphalt mixtures. Due to the nature of road pavement traffic loading, which is characterized by series of intermittent pulses with rest periods, consideration of healing is necessary for accurate fatigue life estimation. Nevertheless, the vast majority of existing methods relies on relationships established using continuous load conditions. The paper presents a new approach to fatigue life determination, based on pseudo strain energy density. Two components of energy released in fatigue test are considered: the energy responsible for damage growth and the energy consumed to counteract the healing effect. Theoretical derivations were verified in experimental tests, which were performed on asphalt mastics using the Dynamic Shear Rheometer (DSR). It was shown that fatigue life increases with the duration of rest periods on a linear-log scale. Moreover, fatigue life and healing abilities of the analysed asphalt mastics were affected by the type of bitumen and filler, as well as the ageing process.


  • Contemporary and Conventional Passive Methods of Intensifying Convective Heat Transfer—A Review
    • Ewa Kozłowska
    • Marek Szkodo
    2024 ENERGIES

    The ever-increasing demand for effective heat dissipation and temperature control in industrial and everyday applications highlights a critical research problem. The need for development is not only in terms of providing thermal comfort to humans but also forms the basis for the efficient operation of machines and equipment. Cooling of industrial machinery and household electronic equipment is a crucial element in any manufacturing process, and the planning and design of appropriate cooling systems continues to be an integral part of the machine design and construction process. Manufacturers aim to maximize performance while minimizing size and weight. This article reviews widely used passive methods to enhance heat transfer, focusing on their effectiveness in improving convective heat transfer. The techniques examined include surface modifications and advanced materials like foamed metals and nanostructured coatings, which influence turbulence and heat transfer coefficients. The key findings demonstrate that surface roughness, perforated fins, and twisted tapes enhance fluid mixing but may increase flow resistance. The review underscores the significance of these passive methods in optimizing cooling system efficiency across various applications. Despite the variety of techniques available, many areas, especially those involving laser beam modifications, remain underexplored, indicating a need for further research in this field.


  • Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
    • Aningi Mokhalingam
    • Shakti Gupta
    • Roger Sauer
    2024 Full text PHYSICAL REVIEW B

    Understanding the interaction mechanics between graphene layers and co-axial carbon nanotubes (CNTs) is essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the reactive empirical bond order (REBO)+Lennard-Jones (LJ) potential to model the interactions within a sheet, while the LJ, Kolmogorov-Crespi (KC), and Lebedeva potentials are used to model the interactions between sheets. The continuum contact model is formulated for separation distances greater than 0.29 nm, when sliding contact becomes non-dissipative and can be described by a potential. In this regime, sheet deformations are sufficiently small and do not affect the sheet interactions substantially. This allows to treat the master contact surface as rigid, thus simplifying the contact formulation greatly. The model calibration is conducted systematically for a sequence of different stackings using existing and newly proposed ansatz functions. The calibrated continuum model is then implemented in a curvilinear finite element (FE) shell formulation to investigate the pull-out and twisting interactions between co-axial CNTs. The resisting pull-out forces and torques depend strongly on the chirality of the considered CNTs. The absolute differences between FE and MD results are very small, and can be attributed to model assumptions and loading conditions.


  • Controlling nodal displacement of pantographic structures using matrix condensation and interior-point optimization: A numerical and experimental study
    • Ahmed Manguri
    • Najmadeen Saeed
    • Robert Jankowski
    2024 ENGINEERING STRUCTURES

    This study presents an innovative approach for the precise control of nodal displacements in pantographic structures. The method is founded on the Matrix Condensation of Force Method, seamlessly integrated with an Interior Point Optimization algorithm. This combination offers a unique advantage by allowing users to manipulate displaced nodes within a defined coordination domain. Furthermore, this approach introduces the Interior Point Optimization algorithm as an indispensable tool to eliminate inactive turnbuckles and minimize overall actuation requirements. Traditional control methods typically demand a substantial number of turnbuckles and extensive actuation efforts to attain the desired nodal coordinates. The interconnected nature of node movements, wherein changes in one node affect others, adds complexity to determining the impact of bar length alterations on each node. To address this challenge, precisely control power of the Interior Point Optimization algorithm systematically explores numerous scenarios to identify solutions that minimize both actuation and turnbuckle usage. The current technique's effectiveness is validated through rigorous comparisons with established methods, experimental modeling, and rigorous testing using SAP 2000 software. Notably, the current approach yields remarkable results, requiring a staggering 60% less actuation and reducing the reliance on turnbuckles by up to 40% compared to previous methods. This innovation promises to significantly enhance the efficiency and cost-effectiveness of controlling pantographic structures, marking a substantial advancement in this field.


  • Controlling the europium oxidation state in diopside through flux concentration
    • N. Górecka
    • Tadeusz Lesniewski
    • Sebastian Mahlik
    • Marcin Łapiński
    • Y.-T. Tsai
    • Aleksandra Bielicka-giełdoń
    • Karol Szczodrowski
    2024 DALTON TRANSACTIONS

    This paper explores the connection between the H3BO3 flux concentration and the co-existence of Eu2+ and Eu3+ dopants within CaMgSi2O6 crystals (diopside). The samples were synthesised using a solid-state synthesis method under varying atmospheric conditions, including oxidative (air), neutral (N2), and reductive (H2/N2 mixture) environments. Additionally, some materials underwent chemical modification by partially substituting Si4+ with Al3+ ions acting as charge compensation defects stabilizing Eu3+ luminescence. Depending on the specific synthesis conditions, the materials predominantly displayed either the orange-red luminescence of Eu3+ (under oxidising conditions) or the blue luminescence of Eu2+; however, the comprehensive results confirmed the co-existence of Eu3+/Eu2+ luminescence in both cases. This work shows that varying flux concentrations added during synthesis significantly affect the relative strength of Eu2+ and Eu3+ emissions in a manner dependent on the synthesis atmosphere. The emission of Eu2+ increases with a higher flux concentration in materials synthesised under oxidative and neutral atmospheres independent of the chemical modification. In contrast, for materials obtained under a reductive atmosphere, the changes in the Eu3+ emission intensity depended on the presence or absence of Al3+ ions namely the increase of flux increased the Eu3+ intensity in the case of unmodified materials and decreased in the Al-modified ones. All observed effects were qualitatively explained considering the double role of the flux in the studied system, which besides facilitating the diffusion of chemical species during synthesis acts as a charge compensating agent by creating B′Si centres stabilizing Eu3+ emission.


  • Convenient and efficient N-methylation of secondary amines under solvent-free ball milling conditions
    • Mikołaj Walter
    • Olga Ciupak
    • Karol Biernacki
    • Janusz Rachoń
    • Dariusz Witt
    • Sebastian Demkowicz
    2024 Full text Scientific Reports

    In the present work, we report the development of a rapid, efcient, and solvent-free procedure for the N-methylation of secondary amines under mechanochemical conditions. After optimization of the milling parameters, a vibrational ball mill was used to synthesize 26 tertiary N-methylated amine derivatives in a short time of 20 min (30 Hz frequency) and high yields ranging from 78 to 95%. An exception was compounds having a hydroxyl group in their structure, for which a decrease in reaction efciency was observed. During our research, we investigated alternate reaction selectivity occurring in compounds able to form ring closure products that are 3,4-dihydro-2H-1,3-benzoxazine derivatives instead of N-methylated products. The liquid-assisted grinding technique has been applied using formalin as a methylating agent and sodium triacetoxyborohydride as a reducing agent in a reductive amination reaction.


  • Corncob-supported calcium oxide nanoparticles from hen eggshells for cadmium (Cd-II) removal from aqueous solutions; Synthesis and characterization
    • Werkne Sorsa Muleta
    • Sultan Mulisa Denboba
    • Abreham Bayu
    2024 Full text Heliyon

    This study investigated the efficient removal of cadmium ions from aqueous solutions using calcium oxide nanoparticles (CaO NPs) synthesized from waste hen eggshells using a Sol-gel method and supported on corncob bio-adsorbent. The synthesized CaO NPs were characterized using FT-IR, XRD, specific surface area, and TGA. Batch adsorption experiments were conducted to examine the influence of process parameters such as adsorbent dosages, initial Cd (II) concentrations, pH values, and contact times. XRD analysis revealed that the synthesized CaO nanoparticles had a size of 24.34 nm and a specific surface area of 77.4 m2 g. The optimal conditions for achieving the highest percent removal of cadmium (99.108%) were found to be an initial concentration of 55 ppm, pH 7, adsorbent dose of 0.75 g, and contact time of 50 min. The experimental removal efficiency closely matched the predicted value (99.0%), indicating the suitability of the method used in optimizing the removal of Cd (II) ions from aqueous solutions. These findings, corroborated by predicted values, underscore the efficacy of our method in optimizing cadmium removal. Based on these findings, it can be concluded that corncob-supported CaO NPs are optimized for their highest efficiency and hold great promise as a cost-effective and environmentally friendly solution for wastewater treatment with a focus on cadmium removal.


  • Corporate social responsibility and forward default risk under firm and industry heterogeneity
    • Muhammad Mushafiq
    • Błażej Prusak
    • Magdalena Markiewicz
    2024 Full text Entrepreneurial Business and Economics Review

    Objective: This study aims to evaluate the impact of corporate social responsibility on forward default risk (FDR) under the setting of firm and industry heterogeneity. Research Design & Methods: This study evaluated the impact of corporate social responsibility (CSR) on FDR using the data of 497 companies from 2007-2021 in the S&P 500 index, taking into account firm and industry heterogeneity aspects. This study utilized instrumental variable regression using the generalized method of moments (IV-GMM) estimation technique which is robust for controlling the pertinent issue of endogeneity. Findings: This study found a negative relationship between CSR and FDR in the full sample. From the firm size aspect, this study found that CSR is more effective in mitigating FDR in large-cap firms than in mid-cap firms. Firm age heterogeneity exhibited a distinct behaviour, as young and middle-aged firms had a stronger impact on FDR management in comparison to old firms. Industry heterogeneity showed that industries with higher customer interaction have a higher impact on corporate social responsibility to control FDR. Industries with lower customer interaction have a lower impact on corporate social responsibility and FDR. Implications & Recommendations: We proposed some policy recommendations based on the findings in the context of firm and industry heterogeneity. Especially the management of mid-cap and young corporations should improve the CSR policy to enhance CSR performance which would lead to stabilized protection against FDR. Similarly, consumer-intensive industries should also focus on enhancing CSR initiatives to decrease FDR. Non-consumer-intensive industries should focus on enhancing CSR policy and at the same time pay particular attention to communicating CSR results to end consumers to reduce FDR. Contribution & Value Added: This study is the first to explore CSR’s impact on financial parameters under heterogeneity.


  • Correlations of structural, thermal and electrical properties of sodium doped complex borophosphosilicate glass
    • Zuzanna Milewczyk
    • Sharafat Ali
    • Piotr Okoczuk
    • Jacek Ryl
    • Ryszard Barczyński
    • Natalia Wójcik
    2024 Full text CERAMICS INTERNATIONAL

    Borophosphosilicate glasses with varying sodium ion concentrations were investigated for their, structural, thermal, and electrical properties. All the obtained glasses were transparent except the glass with the highest sodium content, which exhibited translucency due to inhomogeneities. Increasing sodium content led to reduced boron and silicon content while maintaining a constant B/Si ratio, indicating progressive depolymerization of the glass network. Confocal microscopy, scanning electron microscopy, and atomic force microscopy showed homogeneous and granular structure for samples with lower sodium content, but higher sodium content resulted in visible agglomeration/nanocrystallization. X-ray diffractograms showed amorphous nature for most samples, with samples doped with the highest concentrations of Na2O showing several broad reflections suggesting nanoscale crystallinity. Fourier-transform infrared spectroscopy revealed shifts in dominant bands with increasing sodium content, indicating depolymerization of the borate network. An observed decrease in glass transition temperature and thermal stability with increasing sodium content was attributed to depolymerization and formation of non-bridging oxygens. Impedance spectroscopy revealed two relaxation processes associated with the transport of Na+ ions through two different regions. DC conductivity and activation energy predominantly increased with the sodium ion content at high temperatures.


  • Corrigendum to “An investigation on residual stress and fatigue life assessment of T-shape welded joints” [Eng. Fail. Anal. 141 (2022) 106685]
    • Jeetendra Mourya
    • Greg Wheatley
    • Mohammed Nizam Khan
    • Reza Masoudi Nejad
    • Ricardo Branco
    • Wojciech Macek
    2024 ENGINEERING FAILURE ANALYSIS

    This paper aims to quantitatively evaluate the residual stress and fatigue life of T-type welded joints with a multi-pass weld in different direction. The main research objectives of the experimental test were to test the residual stress by changing direction along with multiple wielding passes and determine the fatigue life of the welded joints. The result shows that compressive residual stress increases in the sample gradually from single-pass weld to double and triple-pass weld. Moreover, the fatigue life of the specimen also gradually improves with an increasing number of welding passes. Performing multi-pass welding in different directions affects the material’s residual stress and fatigue life, which is an essential factor to consider for assuring the strength of the welded joint.


  • Corrigendum to “Fatigue life improvement using low transformation temperature weld material with measurement of residual stress” [Int. J. Fatigue 164 (2022) 107137]
    • Jordan Franks
    • Greg Wheatley
    • Pedram Zamani
    • Reza Masoudi Nejad
    • Wojciech Macek
    • Ricardo Branco
    2024 INTERNATIONAL JOURNAL OF FATIGUE

    Welding processes often produce high levels of tensile residual stress. Low transformation temperature (LTT) welding wires utilise phase transformation strains to overcome the thermal contraction of a cooling weld. In this paper, the residual stress within each weld was quantified using the milling/strain gauge method, being the strain change measured as the weldment was milled away. The fatigue tests were conducted under uniaxial loading considering two types of LTT materials. The results show that the crack propagation of all samples was similar in cycles although both LTT materials extended the crack initiation, and, therefore, the overall life of the part. It was found that both LTT materials reduced the residual tensile stresses, increased the residual compressive stresses, leading to increase in fatigue life about 30%.