Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Publikacje z roku 2020

Pokaż wszystkie
  • On Radar DoA Estimation and Tilted Rotating Electronically Scanned Arrays
    • Michał Meller
    • Kamil Stawiarski
    2020 Pełny tekst

    We consider DoA estimation in a monopulse radar system employing a tilted rotating array. We investigate the case of nonzero steering angles, in which case the mapping between the target’s azimuth and elevation in the global coordinate system and their counterparts in the array local coordinate system becomes increasingly nonlinear and coupled. Since estimating the azimuth using coherently integrated signals might be difficult because of strong modulation in the difference signal induced by the rotation of the antenna, we develop an iterative approach that alternates between estimating the elevation using coherently integrated signals and estimating the azimuth using unfiltered signals. We also develop a simplified version of the scheme, which employs only one iteration and forms the final estimates by applying simple corrections to results of the first iteration.


  • On rotational instability within the nonlinear six-parameter shell theory
    • Jacek Chróścielewski
    • Francesco Dell’isola
    • Victor Eremeyev
    • Agnieszka Sabik
    2020 INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES

    Within the six-parameter nonlinear shell theory we analyzed the in-plane rotational instability which oc- curs under in-plane tensile loading. For plane deformations the considered shell model coincides up to notations with the geometrically nonlinear Cosserat continuum under plane stress conditions. So we con- sidered here both large translations and rotations. The constitutive relations contain some additional mi- cropolar parameters with so-called coupling factor that relates Cosserat shear modulus with the Cauchy shear modulus. The discussed instability relates to the bifurcation from the static solution without rota- tions to solution with non-zero rotations. So we call it rotational instability. We present an elementary discrete model which captures the rotational instability phenomenon and the results of numerical anal- ysis within the shell model. The dependence of the bifurcation condition on the micropolar material parameters is discussed.


  • On Solvability of Boundary Value Problems for Elastic Micropolar Shells with Rigid Inclusions
    • Victor Eremeev
    • Leonid Lebedev
    2020 Mechanics of Solids

    In the framework of the linear theory of micropolar shells, existence and uniqueness theorems for weak solutions of boundary value problems describing small deformations of elastic micropolar shells connected to a system of absolutely rigid bodies are proved. The definition of a weak solution is based on the principle of virial movements. A feature of this problem is non-standard boundary conditions at the interface between the shell and solids.


  • On stress singularity near the tip of a crack with surface stresses
    • Nikolai Gorbushin
    • Victor Eremeev
    • Gennady Mishuris
    2020 Pełny tekst INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE

    In the framework of the simplified linear Gurtin–Murdoch surface elasticity we discuss a singularity of stresses and displacements in the vicinity of a mode III crack. We show that inhomogeneity in surface elastic properties may significantly affect the solution and to change the order of singularity. We also demonstrate that implicitly or explicitly assumed symmetry of the problem may also lead to changes in solutions. Considering various loading and symmetry conditions we show that the stresses may have logarithmic or square root singularity or be bounded in the vicinity of a crack tip.


  • On Surface Kinetic Constitutive Relations
    • Victor Eremeev
    • Leonid Lebedev
    2020

    In the framework of the strain gradient surface elasticity we discuss a consistent form of surface kinetic energy. This kinetic constitutive equation completes the statement of initial–boundary value problems. The proposed surface kinetic energy density is the most general function consistent with the constitutive relations in bulk. As the surface strain energy depends on the surface deformation gradient and its gradient, the kinetic energy is a quadratic function of the velocity and its surface gradient.


  • On the connected and weakly convex domination numbers
    • Magdalena Lemańska
    • Magda Dettlaff
    • Dorota Osula
    • Maria Jose Souto Salorio
    2020 Pełny tekst Journal of Combinatorial Mathematics and Combinatorial Computing

    In this paper we study relations between connected and weakly convex domination numbers. We show that in general the difference between these numbers can be arbitrarily large and we focus on the graphs for which a weakly convex domination number equals a connected domination number. We also study the influence of the edge removing on the weakly convex domination number, in particular we show that a weakly convex domination number is an interpolating function.


  • On the Consumption of Multimedia Content Using Mobile Devices: a Year to Year User Case Study
    • Przemysław Falkowski-Gilski
    2020 Pełny tekst Archives of Acoustics

    In the early days, consumption of multimedia content related with audio signals was only possible in a stationary manner. The music player was located at home, with a necessary physical drive. An alternative way for an individual was to attend a live performance at a concert hall or host a private concert at home. To sum up, audio-visual effects were only reserved for a narrow group of recipients. Today, thanks to portable players, vision and sound is at last available for everyone. Finally, thanks to multimedia streaming platforms, every music piece or video, e.g. from one’s favourite artist or band, can be viewed anytime and everywhere. The background or status of an individual is no longer an issue. Each person who is connected to the global network can have access to the same resources. This paper is focused on the consumption of multimedia content using mobile devices. It describes a year to year user case study carried out between 2015 and 2019, and describes the development of current trends related with the expectations of modern users. The goal of this study is to aid policymakers, as well as providers, when it comes to designing and evaluating systems and services.


  • On the Correlation of Lignocellulosic Filler Composition with the Performance Properties of Poly(ε-Caprolactone) Based Biocomposites
    • Aleksander Hejna
    • Mohamed Sulyman
    • Marta Przybysz-Romatowska
    • Mohammad Saeb
    • Marek Klein
    • Krzysztof Formela
    2020 Pełny tekst Waste and Biomass Valorization

    In this work, three types of agricultural waste: olive stones (OS), date seed (DS) and wheat bran (WB) were applied as potential lignocellulosic fillers in poly(ε-caprolactone) (PCL) based biocomposites. Differences in composites’ performance were related to the higher content of proteins, noted for WB comparing to other fillers applied, which enhanced plasticization of PCL matrix. The mechanical properties of biocomposites were significantly affected by the agricultural waste fillers. Use of WB caused an obvious, even 25% decrease of tensile strength and hardness, which could be explained on account of glass transition temperature depletion and weaker matrix–filler interfacial interactions. Such phenomenon also increased water uptake of PCL/WB composites by more than 100%, while for PCL/OS and PCL/DS systems only for about 50%. Thermogravimetric analysis revealed that all investigated composites can be effectively processed without thermal decomposition. Generally, the outcome of this work demonstrated that OS, DS, and WB could be applied as promising lignocellulosic fillers used in manufacturing of high-performance polymer biocomposites.


  • On the Dynamics of a Visco–Piezo–Flexoelectric Nanobeam
    • Mohammad Malikan
    • Victor Eremeev
    2020 Pełny tekst Symmetry-Basel

    The fundamental motivation of this research is to investigate the effect of flexoelectricity on a piezoelectric nanobeam for the first time involving internal viscoelasticity. To date, the effect of flexoelectricity on the mechanical behavior of nanobeams has been investigated extensively under various physical and environmental conditions. However, this effect as an internal property of materials has not been studied when the nanobeams include an internal damping feature. To this end, a closed-circuit condition is considered taking converse piezo–flexoelectric behavior. The kinematic displacement of the classical beam using Lagrangian strains, also applying Hamilton’s principle, creates the needed frequency equation. The natural frequencies are measured in nanoscale by the available nonlocal strain gradient elasticity model. The linear Kelvin–Voigt viscoelastic model here defines the inner viscoelastic coupling. An analytical solution technique determines the values of the numerical frequencies. The best findings show that the viscoelastic coupling can directly affect the flexoelectricity property of the material.


  • On the effective properties of foams in the framework of the couple stress theory
    • Andrzej Skrzat
    • Victor Eremeev
    2020 Pełny tekst CONTINUUM MECHANICS AND THERMODYNAMICS

    In the framework of the couple stress theory, we discuss the effective elastic properties of a metal open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.


  • On the electronic structure of methyl butyrate and methyl valerate
    • Małgorzata Śmiałek-Telega
    • Denis Duflot
    • Nykola C. Jones
    • Søren Hoffmann
    • Lucia Zuin
    • Michael MacDonald
    • Nigel J. Mason
    • Paulo Limão-Vieira
    2020 Pełny tekst EUROPEAN PHYSICAL JOURNAL D

    We present novel results of the analysis of the electronic structure of two aliphatic esters: methyl butyrate and methyl valerate. High-resolution photoabsorption spectra were collected and analyzed over the energy range 4.0–10.8 eV and showed for both the molecules not only a clear band of the HOMO to LUMO transition, but also vibronic structure associated with the first Rydberg-valence transition. Photoelectron spectra recorded from 9 to over 28 eV revealed many ionization states with the first adiabatic ionization energies found to be 9.977 eV and 9.959 eV for methyl butyrate and methyl valerate, respectively. Ab initio calculations have been performed in order to help assign the photoabsorption and photoelectron features. Photolysis life times in the atmosphere were calculated revealing that photolysis is not competitive over hydroxyl radical scavenging in the process of removal of these esters from the atmosphere.


  • On the Existence of Homoclinic Type Solutions of a Class of Inhomogenous Second Order Hamiltonian Systems
    • Jakub Ciesielski
    • Joanna Janczewska
    • Nils Waterstraat
    2020 Pełny tekst Journal of Dynamics and Differential Equations

    We show the existence of homoclinic type solutions of a class of inhomogenous second order Hamiltonian systems, where a C1-smooth potential satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time variable, and a forcing term is sufficiently small in the space of square integrable functions. The idea of our proof is to approximate the original system by time-periodic ones, with larger and larger time-periods. We prove that the latter systems admit periodic solutions of mountain-pass type, and obtain homoclinic type solutions of the original system from them by passing to the limit (in the topology of almost uniform convergence) when the periods go to infinity.


  • On the geometrically nonlinear vibration of a piezo-flexomagnetic nanotube
    • Mohammad Malikan
    • Victor Eremeev
    2020 Pełny tekst MATHEMATICAL METHODS IN THE APPLIED SCIENCES

    In order to describe the behavior of thin elements used in MEMS and NEMS, it is essential to study a nonlinear free vibration of nanotubes under complicated external fields such as magnetic environment. In this regard, the magnetic force applied to the conductive nanotube with piezo-flexomagnetic elastic wall is considered. By the inclusion of Euler-Bernoulli beam and using Hamilton’s principle, the equations governing the system are extracted. More importantly, a principal effect existed in a nonlinear behavior such as axial inertia is thoroughly analyzed which is not commonly investigated. We then consider the effects of nanoscale size using the nonlocal theory of strain gradient (NSGT). Hereafter, the frequencies are solved as semi-analytical solutions on the basis of Rayleigh-Ritz method. The piezo-flexomagnetic nanotube (PF-NT) is calculated with different boundary conditions. In order to validate, the results attained from the present solution have been compared with those available in the open literature. We realized that the nonlinear frequency analysis is so significant when a nanotube has fewer degrees of freedom at both ends, and its length is long.


  • On the non-linear dynamics of torus-shaped and cylindrical shell structures
    • Shahriar Dastjerdi
    • Bekir Akgöz
    • Ömer Civalek
    • Mohammad Malikan
    • Victor Eremeev
    2020 Pełny tekst INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE

    In this study, the non-linear dynamic analysis of torus-shaped and cylindrical shell-like structures has been studied. The applied material is assumed as the functionally graded material (FGM). The structures are considered to be used for important machines such as wind turbines. The effects of some environmental factors on the analysis like temperature and humidity have been considered. The strain field has been calculated in general form and in continue the dynamic governing equations of torus structure have been derived based on the first-order shear deformation theory. The rotation around two independent axes in the torus coordinate system is considered and time-dependent equations are solved using SAPM semi-analytical method. The stresses and deformations generated in the torus and cylindrical shaped structures are plotted. The rotation of structures has been attended due to some transportation purposes. The effect of internal pressures as well as rotational speed at torus and cylindrical structures has been investigated in several numerical diagrams. The results are presented in the form of graphs that consider the rotational effects, loading, thermal and humid (hygro-thermal) environments, and size of the structures. This research can provide scientific perspectives to researchers who will examine the dynamic analysis of torus and cylindrical shaped structures.


  • On the plastic buckling of curved carbon nanotubes
    • Mohammad Malikan
    2020 Pełny tekst Theoretical and Applied Mechanics Letters

    This research, for the first time, predicts theoretically static stability response of a curved carbon nanotube (CCNT) under an elastoplastic behavior with several boundary conditions. The CCNT is exposed to axial compressive loads. The equilibrium equations are extracted regarding the Euler–Bernoulli displacement field by means of the principle of minimizing total potential energy. The elastoplastic stress-strain is concerned with Ramberg–Osgood law on the basis of deformation and flow theories of plasticity. To seize the nano-mechanical behavior of the CCNT, the nonlocal strain gradient elasticity theory is taken into account. The obtained differential equations are solved using the Rayleigh–Ritz method based on a new admissible shape function which is able to analyze stability problems. To authorize the solution, some comparisons are illustrated which show a very good agreement with the published works. Conclusively, the best findings confirm that a plastic analysis is crucial in predicting the mechanical strength of CCNTs.


  • On the preestimation technique and its application to identification of nonstationary systems
    • Maciej Niedźwiecki
    • Artur Gańcza
    • Marcin Ciołek
    2020

    The problem of noncausal identification of a nonstationary stochastic FIR (finite impulse response) sys- tem is reformulated, and solved, as a problem of smoothing of preestimated parameter trajectories. Three approaches to preestimation are critically analyzed and compared. It is shown that optimization of the smoothing operation can be performed adaptively using the parallel estimation technique. The new approach is computationally attractive and yields estimation results that are comparable or better than those provided by the state-of-the-art local basis function approach and the multi- resolution wavelet approach.


  • On the Usefulness of the Generalised Additive Model for Mean Path Loss Estimation in Body Area Networks
    • Michał Laskowski
    • Sławomir Ambroziak
    • Luis M. Correia
    • Krzysztof Świder
    2020 Pełny tekst IEEE Access

    In this article, the usefulness of the Generalised Additive Model for mean path loss estimation in Body Area Networks is investigated. The research concerns a narrow-band indoor off-body network operating at 2.45 GHz, being based on measurements performed with four different users. The mean path loss is modelled as a sum of four components that depend on path length, antenna orientation angle, absolute difference between transmitting and receiving antenna heights and relative polarisation of both antennas. It is proved that the Generalised Additive Model allows for mean path loss estimation with a higher accuracy in comparison with Linear Regression. The obtained mean error is 0 dB, the root mean square error is 5.52 dB and the adjusted coefficient of determination is 61.2%.


  • On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
    • Victor Eremeev
    • Sergey Lurie
    • Yury Solyaev
    • Francesco dell'Isola
    2020 Pełny tekst ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK

    In this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class of solids is therefore related to Korteweg or Cahn–Hilliard fluids. The postulated energy naturally induces the space in which the aforementioned well-posedness result can be formulated. In this energy space, the introduced norm does involve the linear combination of some specific higher-order derivatives only: it is, in fact, a particular example of anisotropic Sobolev space. It is also proven that aforementioned weak solutions belongs to the space H1(div,V), i.e. the space of H1 functions whose divergence belongs to H1. The proposed mathematical frame is essential to conceptually base, on solid grounds, the numerical integration schemes required to investigate the properties of dilatational strain gradient elastic bodies. Their energy, as studied in the present paper, has manifold interests. Mathematically speaking, its singularity causes interesting mathematical difficulties whose overcoming leads to an increased understanding of the theory of second gradient continua. On the other hand, from the mechanical point of view, it gives an example of energy for a second gradient continuum which can sustain externally applied surface forces and double forces but cannot sustain externally applied surface couples. In this way, it is proven that couple stress continua, introduced by Toupin, represent only a particular case of the more general class of second gradient continua. Moreover, it is easily checked that for dilatational strain gradient continua, balance of force and balance of torques (or couples) are not enough to characterise equilibrium: to this aim, externally applied surface double forces must also be specified. As a consequence, the postulation scheme based on variational principles seems more suitable to study second gradient continua. It has to be remarked finally that dilatational strain gradient seems suitable to model the experimentally observed behaviour of some material used in 3D printing process.


  • One-step recovery of REE oxalates in electro-leaching of spent NdFeB magnets
    • Irina Makarova
    • Jacek Ryl
    • Zhi Sun
    • Irina Kurilo
    • Karolina Górnicka
    • Markku Laatikainen
    • Eveliina Repo
    2020 Pełny tekst SEPARATION AND PURIFICATION TECHNOLOGY

    Recovery of rare-earth elements (REEs) from spent NdFeB magnets is receiving great attention because of high amount of neodymium and potential risk of environmental pollution. In this study, a novel environment-friendly hydrometallurgical route is proposed for efficient recovery of REEs during electrochemical leaching with sulfuric and oxalic acids. With proper adjustment of the electrolyte composition and operating conditions, effective separation of different elements is observed; a compact layer of REE oxalates in a purity of up to 93% is obtained on the cathode, while iron remains in the solution and as solid residue for further recovery. The mechanisms during the electro-leaching process were subsequently investigated and we propose that cathodic deposition of the REEs is due to electrostatic attraction of the REE-oxalate particles on the cathode. With this finding, selective recovery of REEs from spent magnets can be achieved. This study provides a new insight on electronic waste recycling by implementing principles of electrochemistry.


  • On-line measurement of wood surface smoothness
    • Jakub Sandak
    • Kazimierz Orłowski
    • Anna Sandak
    • Daniel Chuchała
    • Piotr Taube
    2020 Pełny tekst Drvna Industrija

    The latest progress in the field of optics and microelectronics resulted in development of new generation vision systems capable of scanning surface topography with very high sampling frequencies. The blue color of illuminating light as well as novel systems for controlling ultra-thin laser line thickness allows measurement of the porous surface of wood with a triangulation method. Three alternative sensors were tested here in order to verify their suitability for determination of surface topography in the industrial environment. The scanning head was installed at the exit zone of the four-side profiling moulder and was set to scrutinize the wood surface shape line-by-line, immediately after profiling. The sensor was also tested for automatic detection of surface defects appearing on elements after sanding, wetting and painting with diverse finishing products. The set of pilot test results, together with an original algorithm for real-time surface defects detection, is presented.