Repozytorium publikacji - Politechnika Gdańska

Ustawienia strony

english
Repozytorium publikacji
Politechniki Gdańskiej

Publikacje z roku 2020

Pokaż wszystkie
  • Implementation of Hermite-Ritz method and Navier’s Technique for Vibration of Functionally Graded Porous Nanobeam Embedded in Winkler-Pasternak Elastic Foundation Using bi-Helmholtz type of nonlocal elasticity
    • Subrat Kumar Jena
    • S. Chakraverty
    • Mohammad Malikan
    • Hamid M. Sedighi
    2020 Pełny tekst Journal of Mechanics of Materials and Structures

    Present study is devoted to investigating the vibration characteristics of Functionally Graded (FG) porous nanobeam embedded in an elastic substrate of Winkler-Pasternak type. Classical beam theory (CBT) or Euler-Bernoulli beam theory (EBT) has been incorporated to address the displacement of the FG nanobeam. Bi-Helmholtz type of nonlocal elasticity is being used to capture the small scale effect of the FG nanobeam. Further, the nanobeam is assumed to have porosity, distributed evenly along the thickness throughout the cross-section. Young’s modulus and mass density of the nanobeam are considered to vary along the thickness from ceramic to metal constituents in accordance with power-law exponent model. A numerically efficient method, namely the Hermite-Ritz method, is incorporated to compute the natural frequencies of Hinged-Hinged (HH), Clamped-Hinged (CH), and Clamped-Clamped (CC) boundary conditions. A closed-form solution is also obtained for Hinged-Hinged (HH) boundary condition by employing Navier’s technique. The advantages of using Hermite polynomials as shape functions are orthogonality, a large domain that makes the method more computationally efficient and avoids ill-conditioning for higher values of polynomials. Additionally, the present results are validated with other existing results in special cases demonstrating excellent agreement. A comprehensive study has been carried out to justify the effectiveness or convergence of the present model or method. Likewise, impacts of various scaling parameters such as Helmholtz and bi-Helmholtz types of nonlocal elasticity, porosity volume fraction index, power-law exponent, and elastic foundation on frequency parameters have been investigated.


  • Implementation of spatial/polarization diversity for improved-performance circularly polarized multiple-input-multiple-output ultra-wideband antenna
    • Ubaid Ullah
    • Ismail Mabrouk
    • Sławomir Kozieł
    • Muath Al-hasan
    2020 Pełny tekst IEEE Access

    In this paper, spatial and polarization diversities are simultaneously implemented in an ultra-wideband (UWB) multiple-input-multiple-output (MIMO) antenna to reduce the correlation between the parallel-placed radiators. The keystone of the antenna is systematically modified coplanar ground planes that enable excitation of circular polarization (CP). To realize one sense of circular polarization as well as ultra-wideband operation, an extended rectangular slot is etched on the left-hand-side of the coplanar waveguide (CPW) feed. This is combined with the asymmetrical ground plane geometry on the right-hand-side of the feeding line. The current flowing on the slotted ground plane forms a quasi-loop and generates CP, whereas the combination of the vertical current on the feedline and the horizontal current on the asymmetric ground plane adds to the axial ratio (AR) bandwidth. To implement the MIMO design with polarization and spatial diversity, the position of the coplanar ground planes is switched with respect to the feedline, and placed in a parallel formation with the edge-to-edge distance of 0.29λ0 . All geometrical parameters are optimized at the full-wave level of description before prototyping and experimental characterization. Simulation and measured results indicate that the proposed MIMO antenna features approximately 82% impedance bandwidth from 2.9 GHz to 7.1 GHz and 68.5% (3.1 GHz- 6.35 GHz) AR bandwidth. Moreover, the peak envelop correlation coefficient (ECC) is below 0.003, which corresponds to almost no correlation between the radiators. The antenna can be operated with either bidirectional or unidirectional characteristics, covering multiple commercial application bands including WLAN and WiMax.


  • Implementation Of The Innovative Radiolocalization System VCS-MLAT (Voice Communication System Multilateration)
    • Szymon Wiszniewski
    • Olga Błaszkiewicz
    • Alicja Olejniczak
    • Jarosław Sadowski
    • Jacek Stefański
    2020

    In the article the concept of the radiolocalization subsystem of the VHF communication for aviation VCS-MLAT (Voice Communication System – Multilateration) is presented. The distributed localization system can estimate the position of the aircraft using the audio signals from aircraft transmitters in the VHF band (118-136 MHz). This paper shows initial verification of the possibility to use voice airband communication to estimate the position of the aircraft. Main assumptions of the project and the structure of the localization modules (ground receiver stations) are also presented.


  • Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst
    • Eryka Mrotek
    • Szymon Dudziak
    • Izabela Malinowska
    • Daniel Pelczarski
    • Zuzanna Ryżyńska
    • Anna Zielińska-Jurek
    2020 Pełny tekst SCIENCE OF THE TOTAL ENVIRONMENT

    In the present study, susceptibility to photocatalytic degradation of etodolac, 1,8-diethyl-1,3,4,9 – tetrahydro pyran - [3,4-b] indole-1-acetic acid, which is a non-steroidal anti-inflammatory drug frequently detected in an aqueous environment, was for the first time investigated. The obtained p-type TiO2-based photocatalyst coupled with zinc ferrite nanoparticles in a core-shell structure improves the separation and recovery of nanosized TiO2 photocatalyst. The characterization of ZnFe2O4/SiO2/TiO2, including XRD, XPS, TEM, BET, DR/UV-Vis, impedance spectroscopy and photocatalytic analysis, showed that magnetic photocatalyst containing anatase phase revealed markedly improved etodolac decomposition and mineralization measured as TOC removal compared to photolysis reaction. The effect of irradiation and pH range on photocatalytic decomposition of etodolac was studied. The most efficient degradation of etodolac was observed under simulated solar light for a core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst at pH above 4 (pKa=4.7) and below 7. The irradiation of etodolac solution in a broader light range revealed a synergetic effect on its photodegradation performance. After only 20 min of degradation, about 100% of etodolac was degraded. Based on the photocatalytic analysis in the presence of scavengers and HPLC analysis, the transformation intermediates and possible photodegradation pathways of etodolac were studied. It was found that ∙O2- attack on C2-C3 bond inside pyrrole ring results mostly in the hydroxylation of the molecule, which next undergoes CH2COOH detachment to give 1,9-diethyl-3,4-dihydro-pyrano[3,4-b]indol-4a-ol. The obtained compound should further undergo subsequent hydropyran and pyrrole ring breaking to give a family of benzene derivatives.


  • Improved model of isothermal and incompressible fluid flow in pipelines versus the Darcy–Weisbach equation and the issue of friction factor
    • Zdzisław Kowalczuk
    • Marek Tatara
    2020 Pełny tekst JOURNAL OF FLUID MECHANICS

    In this article, we consider the modelling of stationary incompressible and isothermal one-dimensional fluid flow through a long pipeline. The approximation of the average pressure in the developed model by the arithmetic mean of inlet and outlet pressures leads to the known empirical Darcy–Weisbach equation. Most importantly, we also present another improved approach that is more accurate because the average pressure is estimated by integrating the pressure along the pipeline. Through appropriate transformation, we show the difference between the Darcy–Weisbach equation and the improved model that should be treated as a Darcy–Weisbach model error, in multiplicative and additive form. This error increases when the overall pressure drop increases. This symptomatic phenomenon is discussed in detail. In addition, we also consider four methods of estimating the coefficient of friction, assess the impact of pressure difference on the estimated average flow velocity and, based on experimental data, we show the usefulness of new proposals in various applications.


  • Improved-Efficacy Optimization of Compact Microwave Passives by Means of Frequency-Related Regularization
    • Sławomir Kozieł
    • Anna Pietrenko-Dąbrowska
    • Hasan Alhasan
    2020 Pełny tekst IEEE Access

    Electromagnetic (EM)-driven optimization is an important part of microwave design, especially for miniaturized components where the cross-coupling effects in tightly arranged layouts make traditional (e.g., equivalent network) representations grossly inaccurate. Efficient parameter tuning requires reasonably good initial designs, which are difficult to be rendered for newly developed structures or when re-design for different operating conditions or material parameters is required. If global search is needed, due to either the aforementioned issues or multi-modality of the objective function, the computational cost of the EM-driven design increases tremendously. This paper introduces a frequency-related regularization as a way of improving the efficacy of simulation-based design processes. Regularization is realized by enhancing the conventional (e.g., minimax) objective function using a dedicated penalty term that fosters the alignment of the circuit characteristics (e.g., the operating frequency or bandwidth) with the target values specified by the design requirement. This leads to smoothening of the objective function landscape, improves reliability of the optimization process, and reduces its computational cost as compared to the standard formulation. An added benefit is the increased immunity to poor initial designs and multi-modality issues. In particular, regularization can make local search routines sufficient in situations where global optimization would normally be necessary. The presented approach is validated using two miniaturized circuits, a rat-race and a branch line coupler. The numerical results demonstrate its superiority over conventional design problem formulations in terms of reliability of the optimization process.


  • Improvement of Performance Level of Steel Moment-Resisting Frames Using Tuned Mass Damper System
    • Masoud Dadkhah
    • Reza Kamgar
    • Heisam Heidarzadeh
    • Anna Jakubczyk-Gałczyńska
    • Robert Jankowski
    2020 Pełny tekst Applied Sciences-Basel

    In this paper, parameters of the tuned mass dampers are optimized to improve the performance level of steel structures during earthquakes. In this regard, a six-story steel frame is modeled using a concentrated plasticity method. Then, the optimum parameters of the Tuned Mass Damper (TMD) are determined by minimizing the maximum drift ratio of the stories. The performance level of the structure is also forced to be located in a safety zone. The incremental dynamic analysis is used to analyze the structural behavior under the influence of the artificial, near- and far-field earthquakes. The results of the investigation clearly show that the optimization of the TMD parameters, based on minimizing the drift ratio, reduces the structural displacement, and improves the seismic behavior of the structure based on Federal Emergency Management Agency (FEMA -356). Moreover, the values of base shear have been decreased for all studied records with peak ground acceleration smaller or equal to 0.5 g.


  • Improvement of ships seakeeping performance by application of the full-scale cfd simulations
    • Karol Niklas
    • Hanna Pruszko
    2020

    The ship’s fuel economy is increasingly important. The paper presents the effect of redesigning a case study ship for increasing seakeeping performance. Selected wave parameters reflect very difficult operational conditions existing on the North Sea and the Baltic Sea. The analyzed variants of a case study ship represent the latest developments of modern hull forms. The concepts similar to V-shaped bulbous bow, X-bow, X-aft, B-bow were adopted. Full-scale CFD simulations were performed to analyze the influence of innovative hull forms on the added resistance, heave and pitch motions for head waves and two vessel speeds. It was found that with the use of Full-scale CFD simulations it is possible to capture phenomena that cause ship’s non-linear behavior. The calculated relation between added resistance and ships’ vertical motions was opposite to linear strip theory. It proves that the results obtained by linear strip theory method and the CFD can differ significantly.


  • Improvement of subsoil and railway substructure by explosive means.
    • Eligiusz Mieloszyk
    • Anita Milewska
    • Mariusz Wyroślak
    2020

    Quick and effective method of subsoil and railway substructure improvement by using explosive means (registered trade name: microblasting) allowes design and construct railways on lowered bearing soils (i.e. wetlands, marshlands, industrial by-products, municipal wastes, degraded antropogenic embankments). It is usefull and recommendable technology to construct new railways, modernization or maintenance and repairing of old ones (often associated with modernization). Properly improved subsoil and railway substructure is a warranty of reliability for railways. It increase vitality and security of rail traffic.


  • Improving Objective Speech Quality Indicators in Noise Conditions
    • Krzysztof Kąkol
    • Grazina Korvel
    • Bożena Kostek
    2020

    This work aims at modifying speech signal samples and test them with objective speech quality indicators after mixing the original signals with noise or with an interfering signal. Modifications that are applied to the signal are related to the Lombard speech characteristics, i.e., pitch shifting, utterance duration changes, vocal tract scaling, manipulation of formants. A set of words and sentences in Polish, recorded in silence, as well as in the presence of interfering signals, i.e., pink noise and the so-called babble speech, also referred to as the “cocktail-party” effect is utilized. Speech samples were then processed and measured utilizing objective indicators to check whether modifications applied to the signal in the presence of noise increased values of the speech quality index, i.e., PESQ (Perceptual Evaluation of Speech Quality) standard.


  • Improving the Accuracy of Automatic Reconstruction of 3D Complex Buildings Models from Airborne Lidar Point Clouds
    • Marek Kulawiak
    • Zbigniew Łubniewski
    2020 Pełny tekst Remote Sensing

    Due to high requirements of variety of 3D spatial data applications with respect to data amount and quality, automatized, effcient and reliable data acquisition and preprocessing methods are needed. The use of photogrammetry techniques—as well as the light detection and ranging (LiDAR) automatic scanners—are among attractive solutions. However, measurement data are in the form of unorganized point clouds, usually requiring transformation to higher order 3D models based on polygons or polyhedral surfaces, which is not a trivial process. The study presents a newly developed algorithm for correcting 3D point cloud data from airborne LiDAR surveys of regular 3D buildings. The proposed approach assumes the application of a sequence of operations resulting in 3D rasterization, i.e., creation and processing of a 3D regular grid representation of an object, prior to applying a regular Poisson surface reconstruction method. In order to verify the accuracy and quality of reconstructed objects for quantitative comparison with the obtained 3D models, high-quality ground truth models were used in the form of the meshes constructed from photogrammetric measurements and manually made using buildings architectural plans. The presented results show that applying the proposed algorithm positively influences the quality of the results and can be used in combination with existing surface reconstruction methods in order to generate more detailed 3D models from LiDAR scanning.


  • Improving the Performance of a Graphite Foil/Polyaniline Electrode Material by a Thin PEDOT:PSS Layer for Application in Flexible, High Power Supercapacitors
    • Zuzanna Zarach
    • Konrad Trzciński
    • Marcin Łapiński
    • Anna Lisowska-Oleksiak
    • Mariusz Szkoda
    2020 Pełny tekst Materials

    In this study, we present a novel strategy for enhancing polyaniline stability and thus obtaining an electrode material with practical application in supercapacitors. A promising (graphite foil/polyaniline/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) GF/PANI/PEDOT:PSS) electrode material was characterized and used in the construction of a symmetric supercapacitor that provides an outstanding high power density. For this purpose, the electropolymerization of PANI was carried out on a graphite foil and then a thin protective layer of PEDOT:PSS was deposited. The presence of the nanometer PEDOT:PSS layer made it possible to widen the electroactivity potential range of the electrode material. Moreover, the synergy between materials positively affected the amount of accumulated charge, and thus the thin PEDOT:PSS layer contributed to enhancing the specific capacity of the electrode material. The electrochemical performance of the GF/PANI/PEDOT:PSS electrode, as well as the symmetrical supercapacitor, was investigated by cyclic voltammetry and galvanostatic charge/discharge cycles in 1 M H2SO4 at room temperature. The fabricated electrode material shows a high specific capacitance (Csp) of 557.4 Fg−1 and areal capacitance (Careal) of 2600 mF·cm−2 in 1 M H2SO4 at a current density of 200 mA·cm−2 (~4 A·g−1). The supercapacitor performance was studied and the results show that a thin PEDOT:PSS layer enables cycling stability improvement of the device from 54% to 67% after 10,000 cycles, and provides a high specific capacity (159.8 F·g−1) and a maximum specific power (18,043 W·kg−1) for practical applications.


  • Improving the Performance of Ontological Querying by using a Contextual Approach
    • Wojciech Waloszek
    • Aleksander Waloszek
    2020 Pełny tekst Procedia Computer Science

    In the paper we present the results of experiment we performed to determine whether a contextual approach may be used to increase the performance of querying a knowledge base. For the experiments we have used a unique setting where we put much effort in developing a contextual and a non-contextual ontology which are as much close counterparts as possible. To achieve this we created a contextual version of a non-contextual ontology and reformulated the set of competency questions to reflect the contextual structure of the newly created knowledge base. The results of the experiment strongly suggest that using contexts might be advantageous for improving performance, and also show the further ways of development of the approach.


  • Improving the procedure of probabilistic load testing design of typical bridges based on structural response similarities
    • Piotr Owerko
    • Karol Winkelmann
    2020 Pełny tekst Archives of Civil Engineering

    This paper concerns load testing of typical bridge structures performed prior to operation. In-situ tests of a two-span post-tensioned bridge loaded with three vehicles of 38-ton mass each formed the input of this study. On the basis of the results of these measurements, an advanced FEM model of the structure was developed for which the sensitivity analysis was performed for chosen uncertainty sources. Three uncorrelated random variables representing material uncertainties, imperfections of positioning, and total mass of loading vehicles were indicated. Afterward, two alternative FE models were created based on a fully parametrized geometry of the bridge, differing by a chosen global parameter – the skew angle of the structure. All three solid models were subjected to probabilistic analyses with the use of the second-order Response Surface Method in order to define the features of the structural response of the models. It was observed that both the ranges of expected deflections and their corresponding mean values decreased with an increase in the skewness of the bridge models. Meanwhile, the coefficient of variation and the relative difference between the mean value and boundary quantiles of the ranges remain insensitive to the changes in the skew angle. Owing to this, a procedure was formulated to simplify the process of load testing design of typical bridges differing by a chosen global parameter. The procedure allows - if certain conditions are fulfilled - to perform probabilistic calculations only once and use the indicated probabilistic parameters in the design of other bridges for which calculations can be performed deterministically.


  • Improving the Quality of Magnetic Signature Reproduction by Increasing Flexibility of Multi-Dipole Model Structure and Enriching Measurement Information
    • Jarosław Tarnawski
    • Adam Cichocki
    • Tomasz Rutkowski
    • Krystian Buszman
    • Mirosław Wołoszyn
    2020 Pełny tekst IEEE Access

    The paper presents the construction of a multi-dipole model that allows reproducing magneticsignatures of ferromagnetic objects. The virtual object used in the paper is an ellipsoid, which is the sourceof synthetic data. To make the situation more realistic, noise is added to the synthetic data. Two significantimprovements compared to previous work are presented. Three-axial magnetometers are introduced insteadof uniaxial magnetometers. However, a more important change is the modification of the model structurethat allows placing dipoles on the entire plane, e.g. object’s deck. The multi-dipole model consists of ana priori assumed number of permanent and induced single-dipole models. Each single dipole is described bythree magnetic moments and, depending on the applied approach, one or two dipole position parameters. Thenon-linear least-squares optimization method is used to determine model parameters. To assess the qualityof magnetic signature reproduction, qualitative and quantitative forms are used. The final quality assessmentis based on differences between the reference fields and the fields determined from the multi-dipole model.The applied modifications bring significant improvement, however, only their combined application allowsto restore magnetic signatures with good quality for directions other than for which the data were available.


  • Improving the Survivability of Carrier Networks to Large-Scale Disasters
    • Amaro de Sousa
    • Jacek Rak
    • Fábio Barbosa
    • Dorabella Santos
    • Deepak Mehta
    2020

    This chapter is dedicated to the description of methods aiming to improve the survivability of carrier networks to large-scale disasters. First, a disaster classification and associated risk analysis is described, and the disaster-aware submarine fibre-optic cable deployment is addressed aiming to minimize the expected costs in case of natural disasters. Then, the chapter addresses the improvement of the network connectivity resilience to multiple node failures caused by malicious human activities. Two improvement methods are described aiming to minimize the connectivity impact of any set of node failures. One method is based on the appropriate selection of a set of network nodes to be made robust to node attacks. The other is a topology design method aiming to select the most appropriate set of links, within a given fibre budget, that provide the best resilience to multiple node failures. The latter method can also be applied to the upgrade task of a current network topology.


  • Imunofan—RDKVYR Peptide—Stimulates Skin Cell Proliferation and Promotes Tissue Repair
    • Justyna Sawicka
    • Maria Dzierżyńska
    • Anna Wardowska
    • Milena Deptuła
    • Piotr Rogujski
    • Paweł Sosnowski
    • Natalia Filipowicz
    • Alina Mieczkowska
    • Piotr Sass
    • Anna Pawlik
    • Aleksandra Hać
    • Adriana Schumacher
    • Magdalena Gucwa
    • Natalia Karska
    • Jolanta Kamińska
    • Rafał Płatek
    • Jarosław Mazuryk
    • Jacek Zieliński
    • Karolina Kondej
    • Piotr Młynarz
    • Piotr Mucha
    • Piotr Skowron
    • Łukasz Janus
    • Anna Herman-Antosiewicz
    • Paweł Sachadyn
    • Artur Czupryn
    • Arkadiusz Piotrowski
    • Michał Pikuła
    • Sylwia Rodziewicz-Motowidło
    2020 Pełny tekst MOLECULES

    Regeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today’s science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we assessed the potential efficacy of a synthetic hexapeptide, RDKVYR, for the stimulation of tissue repair and wound healing. The hexapeptide is marketed under the name “Imunofan” (IM) as an immunostimulant. IM displayed stability in aqueous solutions, while in plasma it was rapidly bound by albumins. Structural analyses demonstrated the conformational flexibility of the peptide. Tests in human fibroblast and keratinocyte cell lines showed that IM exerted a statistically significant (p < 0.05) pro-proliferative activity (30–40% and 20–50% increase in proliferation of fibroblast and keratinocytes, respectively), revealed no cytotoxicity over a vast range of concentrations (p < 0.05), and had no allergic properties. IM was found to induce significant transcriptional responses, such as enhanced activity of genes involved in active DNA demethylation (p < 0.05) in fibroblasts and activation of genes involved in immune responses, migration, and chemotaxis in adipose-derived stem cells derived from surgery donors. Experiments in a model of ear pinna injury in mice indicated that IM moderately promoted tissue repair (8% in BALB/c and 36% in C57BL/6 in comparison to control).


  • In silico design of telomerase inhibitors.
    • Maciej Bagiński
    • Katarzyna Serbakowska
    2020 Pełny tekst DRUG DISCOVERY TODAY

    Telomerase is a reverse transcriptase enzyme involved in DNA synthesis at the end of linear chromosomes. Unlike in most other cells, telomerase is reactivated most cancerous cells and, therefore, has become a promising new anticancer target. Despite extensive research, direct telomerase inhibitors have yet not been introduced to the clinics because of the complexity of this enzyme. Structures of this protein from simple organisms and human homology models are currently available and have been used in structure-based drug design efforts to find potential inhibitors. Different is silico strategies have been applied and different chemical groups have been explored. Here, we provide an overview of recent discoveries.


  • In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium
    • Oleksandr Oleshko
    • Iryna Liubchak
    • Yevheniia Husak
    • Viktoriia Korniienko
    • Aziza Yusupova
    • Tetiana Oleshko
    • Rafal Banasiuk
    • Marek Szkodo
    • Igor-Matros Taranets
    • Alicja Kazek-Kęsik
    • Wojciech Simka
    • Maksym Pogorielov
    2020 Pełny tekst Materials

    Despite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium–phosphate solution. Chemical and structural properties of the surface-modified titanium were assessed using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) and contact angle measurement. A bacterial adhesion test and cell culture biocompatibility with collagen production were performed to evaluate biological effectiveness of the Ti after the plasma electrolytic process. The NTA-based calcium– phosphate solution with Ag nanoparticles (AgNPs) can provide formation of a thick, porous plasma electrolytic oxidation (PEO) layer enriched in silver oxide. Voltage elevation leads to increased porosity and a hydrophilic nature of the newly formed ceramic coating. The silver-enriched PEO layer exhibits an effective antibacterial effect with high biocompatibility and increased collagen production that could be an effective complex strategy for dental and orthopedic implant development.


  • In Vitro Studies on Nanoporous, Nanotubular and Nanosponge-Like Titania Coatings, with the Use of Adipose-Derived Stem Cells
    • Michalina Ehlert
    • Aleksandra Radtke
    • Tomasz Jędrzejewski
    • Katarzyna Roszek
    • Michał Bartmański
    • Piotr Piszczek
    2020 Pełny tekst Materials

    In vitro biological research on a group of amorphous titania coatings of different nanoarchitectures (nanoporous, nanotubular, and nanosponge-like) produced on the surface of Ti6Al4V alloy samples have been carried out, aimed at assessing their ability to interact with adipose-derived mesenchymal stem cells (ADSCs) and affect their activity. The attention has been drawn to the influence of surface coating architecture and its physicochemical properties on the ADSCs proliferation. Moreover, in vitro co-cultures: (1) fibroblasts cell line L929/ADSCs and (2) osteoblasts cell line MG-63/ADSCs on nanoporous, nanotubular and nanosponge-like TiO2 coatings have been studied. This allowed for evaluating the impact of the surface properties, especially roughness and wettability, on the creation of the beneficial microenvironment for co-cultures and/or enhancing differentiation potential of stem cells. Obtained results showed that the nanoporous surface is favorable for ADSCs, has great biointegrative properties, and supports the growth of co-cultures with MG-63 osteoblasts and L929 fibroblasts. Additionally, the number of osteoblasts seeded and cultured with ADSCs on TNT5 surface raised after 72-h culture almost twice when compared with the unmodified scaffold and by 30% when compared with MG-63 cells growing alone. The alkaline phosphatase activity of MG-63 osteoblasts co-cultured with ADSCs increased, that indirectly confirmed our assumptions that TNT-modified scaffolds create the osteogenic niche and enhance osteogenic potential of ADSCs.