Pokaż publikacje z roku
-
Pokaż wszystkie publikacje z roku 2025
-
Pokaż wszystkie publikacje z roku 2024
-
Pokaż wszystkie publikacje z roku 2023
-
Pokaż wszystkie publikacje z roku 2022
-
Pokaż wszystkie publikacje z roku 2021
-
Pokaż wszystkie publikacje z roku 2020
-
Pokaż wszystkie publikacje z roku 2019
-
Pokaż wszystkie publikacje z roku 2018
-
Pokaż wszystkie publikacje z roku 2017
-
Pokaż wszystkie publikacje z roku 2016
-
Pokaż wszystkie publikacje z roku 2015
-
Pokaż wszystkie publikacje z roku 2014
-
Pokaż wszystkie publikacje z roku 2013
-
Pokaż wszystkie publikacje z roku 2012
-
Pokaż wszystkie publikacje z roku 2011
-
Pokaż wszystkie publikacje z roku 2010
-
Pokaż wszystkie publikacje z roku 2009
-
Pokaż wszystkie publikacje z roku 2008
-
Pokaż wszystkie publikacje z roku 2007
-
Pokaż wszystkie publikacje z roku 2006
-
Pokaż wszystkie publikacje z roku 2005
-
Pokaż wszystkie publikacje z roku 2004
-
Pokaż wszystkie publikacje z roku 2003
-
Pokaż wszystkie publikacje z roku 2002
-
Pokaż wszystkie publikacje z roku 2001
-
Pokaż wszystkie publikacje z roku 2000
-
Pokaż wszystkie publikacje z roku 1999
-
Pokaż wszystkie publikacje z roku 1998
-
Pokaż wszystkie publikacje z roku 1988
-
Pokaż wszystkie publikacje z roku 1987
-
Pokaż wszystkie publikacje z roku 1980
Publikacje z roku 2024
Pokaż wszystkie-
Measurement Performance Verification of Asynchronous Method for Simultaneous Estimation of Object Position and Orientation
- Jarosław Sadowski
- Olga Błaszkiewicz
- Krzysztof Cwalina
- Alicja Olejniczak
- Piotr Rajchowski
- Jacek Stefański
The paper describes the results of a measurement verification of the effectiveness of an asynchronous method of locating an object on a plane using localization signals sent simultaneously from two transmitters placed on that object at a known distance from each other. The advantage of proposed solution is ability to estimate position of mobile object by set of reference receivers that can work asynchronously, which simplifies the construction of reference nodes.
-
Measuring Tilt with an IMU Using the Taylor Algorithm
- Jerzy Demkowicz
This article addresses the important problem of tilt measurement and stabilization. This is particularly important in the case of drone stabilization and navigation in underwater environments, multibeam sonar mapping, aerial photogrammetry in densely urbanized areas, etc. The tilt measurement process involves the fusion of information from at least two different sensors. Inertial sensors (IMUs) are unique in this context because they are both autonomous and passive at the same time and are therefore very attractive. Their calibration and systematic errors or bias are known problems, briefly discussed in the article due to their importance, and are relatively simple to solve. However, problems related to the accumulation of these errors over time and their autonomous and dynamic correction remain. This article proposes a solution to the problem of IMU tilt calibration, i.e., the pitch and roll and the accelerometer bias correction in dynamic conditions, and presents the process of calculating these parameters based on combined accelerometer and gyroscope records using a new approach based on measuring increments or differences in tilt measurement. Verification was performed by simulation under typical conditions and for many different inertial units, i.e., IMU devices, which brings the proposed method closer to the real application context. The article also addresses, to some extent, the issue of navigation, especially in the context of dead reckoning.
-
Mechanical Properties of 3D Printed Parts and Their Injection Molded Alternatives Subjected to Environmental Aging
- Angela Jadwiga Andrzejewska
Additive manufacturing is the technology used in medical, industrial, or lifestyle applications. The scientific literature include works reporting various manufacturing parameters’ influence on changes in additive manufacturing components’ mechanical behavior, especially with fused filament fabrication (FFF). The changes in mechanical strength and toughness of FFF compared to injection molding parts were studied. In the study, the FFF and injection molded parts were aged in buffered saline solution in temperature of 37C. The results show that by differentiating the orientation of the fibers during fabricating, it is possible to reach strength values similar to injection molded parts. Therefore, it was reported that the mechanical strength and toughness changed significantly after aging, and the FFF components lost strength more quickly than their injected alternatives. The research results can be useful during the fabrication of mechanically stable and biodegradable components, which can be more easily recycled than their injected alternatives when used with warmer temperatures and humidity. This article completes the present state of the art on the problem of environmental aging of parts produced from biodegradable materials. Especially, the research was related to the multilayer laminate structure.
-
Mechanical Properties of Additively Manufactured Polymeric Materials—PLA and PETG—For Biomechanical Applications
- Rui F. Martins
- Ricardo Branco
- Miguel Martins
- Wojciech Macek
- Zbigniew Marciniak
- Rui Silva
- Daniela Trindade
- Carla Moura
- Margarida Franco
- Cândida Malça
The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles for part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In addition, six specimens were tested for each printing orientation and material, providing insights into mechanical properties such as Tensile Strength, Young’s Modulus, and Ultimate Strain, suggesting the materials’ potential for biomedical applications. The experimental results were then compared with correspondent mechanical properties obtained from the literature for other polymers like ASA, PC, PP, ULTEM 9085, Copolyester, and Nylon. Thereafter, fatigue resistance curves (S-N curves) for PLA and PETG, printed along 45°, were determined at room temperature for a load ratio, R, of 0.2. Scanning electron microscope observations revealed fibre arrangements, compression/adhesion between layers, and fracture zones, shedding light on the failure mechanisms involved in the fatigue crack propagation of such materials and giving design reference values for future applications. In addition, fractographic analyses of the fatigue fracture surfaces were carried out, as well as X-ray Computed Tomography (XCT) and Thermogravimetric (TGA)/Differential Scanning Calorimetric (DSC) tests.
-
Mechanical response of human thoracic spine ligaments under quasi-static loading: An experimental study
- Radosław Wolny
- Tomasz Wiczenbach
- Angela Andrzejewska
- Jan Henryk Spodnik
Purpose This study aimed to investigate the geometrical and mechanical properties of human thoracic spine ligaments subjected to uniaxial quasi-static tensile test. Methods Four human thoracic spines, obtained through a body donation program, were utilized for the study. The anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), capsular ligament (CL), ligamenta flava (LF), and the interspinous ligament and supraspinous ligament complex (ISL + SSL), were investigated. The samples underwent specimen preparation, including dissection, cleaning, and reinforcement, before being immersed in epoxy resin. Uniaxial tensile tests were performed using a custom-designed mechanical testing machine equipped with an environmental chamber (T = 36.6 °C; humidity 95%). Then, the obtained tensile curves were averaged preserving the characteristic regions of typical ligaments response. Results Geometrical and mechanical properties, such as initial length and width, failure load, and failure elongation, were measured. Analysis of variance (ANOVA) revealed significant differences among the ligaments for all investigated parameters. Pairwise comparisons using Tukey's post-hoc test indicated differences in initial length and width. ALL and PLL exhibited higher failure forces compared to CL and LF. ALL and ISL + SSL demonstrated biggest failure elongation. Comparisons with other studies showed variations in initial length, failure force, and failure elongation across different ligaments. The subsystem (Th1 – Th6 and Th7 – Th12) analysis revealed increases in initial length, width, failure force, and elongation for certain ligaments. Conclusions Variations of both the geometric and mechanical properties of the ligaments were noticed, highlighting their unique characteristics and response to tensile force. Presented results extend very limited experimental data base of thoracic spine ligaments existing in the literature. The obtained geometrical and mechanical properties can help in the development of more precise human body models (HBMs).
-
Mechanisms of Li deposition on graphite anodes: surface coverage and cluster growth
- Arihant Bhandari
- Jacek Dziedzic
- John R. Owen
- Denis Kramer
- Chris-Kriton Skylaris
Li plating on the anode is a side reaction in Li-ion batteries which competes with Li intercalation and leads to loss of capacity. Growth of Li clusters into dendrites is a potential safety hazard for batteries which can lead to internal short-circuit and fires. We consider two possibilities of Li deposition on the surface of graphite anode: deposition of Li+ ions uniformly on the surface and deposition of clusters of metallic Li. Using ab initio simulations, we predict the operating voltage for the occurrence of the above processes and safety measures to prevent dendrite growth in batteries. We find that Li deposition occurs in the following stages: at positive voltages vs. Li, surface deposition of Li+ ions is the dominant process. Below a critical cross-over voltage, the process of reduction of aggregated Li+ ions and the formation of metallic Li clusters takes over. This cross-over voltage is found to be −12 mV on the basal plane of unlithiated graphite and −29 mV on lithiated graphite. To prevent formation of Li clusters and for safe operation of Li-ion batteries, the voltage on the graphite anode should be kept above the cross-over value.
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
- K. M. Monica
- J. Shreeharsha
- Przemysław Falkowski-Gilski
- Bożena Falkowska-Gilska
- Mohan Awasthy
- Rekha Phadk
Introduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic images are acquired from two online benchmark datasets: International Skin Imaging Collaboration (ISIC) 2020 and Human against Machine (HAM) 10000. Subsequently, a normalization technique is employed on the dermoscopic images to decrease noise impact, outliers, and variations in the pixels. Furthermore, cancerous regions in the pre-processed images are segmented utilizing the mask-faster Region based Convolutional Neural Network (RCNN) model. The mask-RCNN model offers precise pixellevel segmentation by accurately delineating object boundaries. From the partitioned cancerous regions, discriminative feature vectors are extracted by applying three pre-trained CNN models, namely ResNeXt101, Xception, and InceptionV3. These feature vectors are passed into the modified Gated Recurrent Unit (GRU) model for MSC classification. In the modified GRU model, a swish-Rectified Linear Unit (ReLU) activation function is incorporated that efficiently stabilizes the learning process with better convergence rate during training. Results and discussion: The empirical investigation demonstrate that the modified GRU model attained an accuracy of 99.95% and 99.98% on the ISIC 2020 and HAM 10000 datasets, where the obtained results surpass the conventional detection models.
-
Meldrum’s acid assisted formation of tetrahydroquinolin‑2‑one derivatives a short synthetic pathway to the biologically useful scaffold
- Małgorzata Ryczkowska
- Alicja Trocka
- Anna Hromova
- Sławomir Makowiec
A new method for the preparation of tetrahydroquinolin-2-one derivatives is presented. This approach involves a two-step reaction between enaminones and acylating agents, immediately followed by electrophilic cyclization, all within a single synthesis procedure, eliminating the need to isolate intermediates. The entire process is facilitated by the use of acyl Meldrum’s acids which not only shortens the preparation time of the substrates but also easily extends the range of substituents That can be used. The method’s scope and limitations were evaluated with various reagent combinations thus demonstrating its general applicability to the synthesis of tetrahydroquinolin-2-one core. Interestingly, some exceptions to the regular reaction pathway were observed when a strong EDG (electron donating group) was introduced via acyl Meldrum’s acids. The underlying mechanism of this phenomenon was elucidated during the investigation.
-
MEMS Modeling in the Context of Inertial Navigation
- Jerzy Demkowicz
Underwater navigation is a research topic current undertaken in many areas of underwater research. The article presents an analysis resulting from MEMS modelling in the context of inertial navigation. The ideal approach was confronted with its limitations, but a non-linear approach, close to the real one, was also presented. Both models were compared in the context of inertial navigation. Random disturbances and their impact on linear and nonlinear dynamic systems, and in this context on Brownian noise motion, were also analysed. The linear velocity and displacement estimates generated by the presented models were compared to the ideal responses. The phenomenon of bifurcation in the context of inertial measurements is presented. Some of the analysis is performed on real data, but for greater clarity, some is performed on simulated data to highlight design issues and limitations.
-
Merton-type default risk and financial performance: the dynamic panel moderation of firm size
- Muhammad Mushafiq
- Syed Ahmad Sami
- Muhammad Khalid Sohail
- Muzammal Ilyas Sindhu
Purpose – The main purpose of this study is to evaluate the probability of default and examine the relationship between default risk and financial performance, with dynamic panel moderation of firm size. Design/methodology/approach – This study utilizes a total of 1,500 firm-year observations from 2013 to 2018 using dynamic panel data approach of generalized method of moments to test the relationship between default risk and financial performance with the moderation effect of the firm size. Findings – This study establishes the findings that default risk significantly impacts the financial performance. The relationship between distance-to-default (DD) and financial performance is positive, which means the relationship of the independent and dependent variable is inverse. Moreover, this study finds that the firm size is a significant positive moderator between DD and financial performance. Practical implications – This study provides new and useful insight into the literature on the relationship between default risk and financial performance. The results of this study provide investors and businesses related to nonfinancial firms in the Pakistan Stock Exchange (PSX) with significant default risk’s impact on performance. This study finds, on average, the default probability in KSE ALL indexed companies is 6.12%. Originality/value – The evidence of the default risk and financial performance on samples of nonfinancial firms has been minimal; mainly, it has been limited to the banking sector. Moreover, the existing studies have only catered the direct effect of only. This study fills that gap and evaluates this relationship in nonfinancial firms. This study also helps in the evaluation of Merton model’s performance in the nonfinancial firms.
-
Mesoscopic simulations of a fracture process in reinforced concrete beam in bending using a 2D coupled DEM/micro-CT approach
- Michał Nitka
- Andrzej Tejchman-Konarzewski
W tej pracy zbadano numerycznie w warunkach 2D złożony proces pękania w krótkiej prostokątnej belce betonowej wzmocnionej jednym prętem podłużnym (bez zbrojenia pionowego) i poddanej quasi-statycznemu zginaniu w trzech punktach. Krytyczne pęknięcie poprzeczne w belce spowodowało jej uszkodzenie podczas doświadczenia. Symulacje numeryczne przeprowadzono klasyczną metodą elementów dyskretnych (DEM). Przyjęto trójfazowy opis betonu: kruszywa, zaprawa i międzyfazowe strefy przejściowe (ITZ) wokół kruszyw. W mezoskopowych obliczeniach DEM opartych na skanach rentgenowskich CT 2D przyjęto rzeczywisty kształt i połączenie cząstek kruszywa w betonie. W obliczeniach odtworzono pręt stalowy z żebrami. Założono także ITZ pomiędzy prętem a zaprawą. Bez narzucania prawa poślizgu, uwzględniono warunek geometryczny na granicy pręt/beton. W pracy skupiono się na wykresie siła-ugięcia, procesie pękania, siłach kontaktowych i naprężeniach wzdłuż pręta. Uzyskano dobry poziom zgodności ewolucji siły pionowej w zależności od ugięcia i mechanizmu zniszczenia w analizach DEM w porównaniu z testami laboratoryjnymi pomimo przyjęcia uproszczonych warunków 2D. Wykazano silny wpływ mezostruktury betonu na wzór pęknięcia.
-
Method for prediction of the frost resistance ability of air‐entrained concrete based on the 3D air void characteristics by x‐ray micro‐CT
- Łukasz Skarżyński
- Mikołaj Miśkiewicz
In modern construction, one of the most important factors in the execution of contracts is time. Standard procedures for assessing the frost resistance or concrete are usually very time-consuming and can take up to 40 days. The current paper is experimentally and practically oriented. It presents an alternative testing method, based on air void network, that allows to assess the frost resistance of concrete within just a few days of taking the samples. X-ray micro-CT scans were introduced to obtain the quantitative and qualitative 3D information about the air void microstructure taking into account total air content: A [%], pores of the size below 300 μm in diameter content: A300 [%], specific surface of air voids: α [mm-1] and spacing factor: L [mm] in order to predict the freeze / thaw durability. To verify the assumptions of the frost resistance method, based on the analysis of pore microstructure, tests of freeze / thaw resistance in accordance with Polish supplement to European Standard [46] were carried out. Presented research revealed that the appropriate microstructure of air pores, in particular, content of micropores with the diameter less than 0.3 mm: A300 combined with a spacing factor: L [mm] can constitute a reliable basis for determining concrete freeze / thaw durability. Thus, method proposed in current paper can be effectively used for fast and trustworthy determination of the air-entrained concrete durability in a short time and without any special preparation of the tested sample, that allows immediate preventive or repair actions to be taken if required.
-
Method of Forming Road Surface Replicas Using 3D Printing Technology
- Wojciech Owczarzak
- Sławomir Sommer
- Grzegorz Ronowski
Rolling resistance is a critical factor that influences vehicle energy consumption, emissions, and overall performance. It directly impacts fuel efficiency, tire longevity, and driving dynamics. Traditional rolling resistance tests are conducted on smooth steel drums, which fail to replicate real-world road surface textures, potentially skewing results. This article presents the process of designing surface replicas using 3D printing technology, which consisted of selecting the internal structure, material, and print parameters of the surface sample. In order to verify the designed structures, an original mechanical strength test was performed. The test was based on pressing the tire onto the test sample with an appropriate force that corresponded to typical conditions during rolling resistance measurements. The test results included surface texture profiles before and after the application of load, which were then superimposed to detect any possible sample deformation. The obtained strength test results confirmed the validity of using 3D printing technology in the process of obtaining road surface replicas.
-
Methodology Approach for Microplastics Isolation from Samples Containing Sucrose
- Kornelia Kadac-Czapska
- Beata Bochentyn
- Aleksandra Maślarz
- Sebastian Mahlik
- Małgorzata Grembecka
The growing production and use of plastics significantly contribute to microplastics (MPs) contamination in the environment. Humans are exposed to MPs primarily through the gastrointestinal route, as these particles are present in beverages and food, e.g., sugar. Effective isolation and identification of MPs from food is essential for their elimination. This study aimed to evaluate factors influencing the isolation of MPs from sucrose solutions to determine optimal conditions for the process. Polyethylene particles were used to test separation methods involving chemical digestion with acids and filtration through membrane filters made of nylon, mixed cellulose ester, and cellulose acetate with pore sizes of 0.8 and 10 µm. The effects of temperature and acid type and its concentration on plastic particles were examined using scanning electron microscopy and µ-Raman spectroscopy. The results indicate that increased temperature reduces solution viscosity and sucrose adherence to MPs’ particles, while higher acid concentrations accelerate sucrose hydrolysis. The optimal conditions for MPs’ isolation were found to be 5% HCl at 70 ◦C for 5 min, followed by filtration using an efficient membrane system. These conditions ensure a high recovery and fast filtration without altering MPs’ surface properties, providing a reliable basis for further analysis of MPs in food.
-
Methodology of generation of CFD meshes and 4D shape reconstruction of coronary arteries from patient-specific dynamic CT
- Krzysztof Psiuk-Maksymowicz
- Damian Borys
- Bartlomiej Melka
- Maria Gracka
- Wojciech Adamczyk
- Marek Rojczyk
- Jaroslaw Wasilewski
- Jan Głowacki
- Mariusz Kruk
- Marcin Nowak
- Ziemowit Ostrowski
- Ryszard Bialecki
Due to the difficulties in retrieving both the time‑dependent shapes of the vessels and the generation of numerical meshes for such cases, most of the simulations of blood flow in the cardiac arteries use static geometry. The article describes a methodology for generating a sequence of time‑dependent 3D shapes based on images of different resolutions and qualities acquired from ECG‑gated coronary artery CT angiography. The precision of the shape restoration method has been validated using an independent technique. The original proposed approach also generates for each of the retrieved vessel shapes a numerical mesh of the same topology (connectivity matrix), greatly simplifying the CFD blood flow simulations. This feature is of significant importance in practical CFD simulations, as it gives the possibility of using the mesh‑morphing utility, minimizing the computation time and the need of interpolation between boundary meshes at subsequent time instants. The developed technique can be applied to generate numerical meshes in arteries and other organs whose shapes change over time. It is applicable to medical images produced by other than angio‑CT modalities.
-
Methods for Quality Assessment of Window View
- Barbara Matusiak
- Filomena Russo
- Mandana Khanie, Sarey
- Natalia Sokół
- Christina Hemauer
- Klaus Martiny
- Carlo Volf
- Siegrun Appelt
- Natalia Giraldo Vasquez
- Aicha Diakite-Kortlever
This paper summarises findings from two workshops evaluating a series of views in various settings by an interdisciplinary group of experts. In the first one (Trondheim, June 2022), ten experts visited and assessed views from nine rooms. In the second one (Lausanne, June 2023), eleven experts assessed window views from four spaces. The workshops’ main objective was to develop and test multi-method assessments of window views. During both workshops, participants completed a survey that included close and open-ended questions about the perceived quality of the room and the view. Participants also measured lux level, took photographs, made hand drawings of the view, and answered a questionnaire about their mood and the environmental conditions in the room. After the workshop, point-in-time daylight simulations were performed for the visited rooms. The paper describes, compares, and recommends the use of the aforementioned methods depending on the type and complexity of the view, and the space, the evaluators’ professional background, and the type of collected data. It also discusses the overlap of the methods and estimates the preparation time, time spent on site, and the amount of work after the visit. Finally, it recommends the use of the tested methods depending on the application.
-
Miasta Nieskończone. Warsztaty animacji poklatkowej doodle-art. Bałtycki Festiwal Nauki 2024
- Marta Koperska-Kośmicka
- Agnieszka Kurkowska
- Aleksandra Karpińska
Warsztaty animacji poklatkowej w technice doodle-art, podczas których uczestnicy stworzyli wspólnie animowany film o mieście marzeń. Warsztaty z animacji poklatkowej są zajęciami rozwijającymi wyobraźnię i kreatywność. Film powstawał zespołowo, poprzez dodawanie nowych elementów rysunku przez każdego z uczestników. Kolejne fazy powstawania wymarzonego miasta zostały uwiecznione na zdjęciach, które po cyfrowej obróbce pozwoliły na stworzenie krótkiego, jednominutowego animowanego filmu.
-
Micro- and nano-Illite to improve strength of untreated-soil as a nano soil-improvement (NSI) technique
- M Cheraghalikhani,
- Hamed Niroumand
- Lech Bałachowski
Soil stabilization is a technique of improving the geotechnical properties of soils for various engineering applications. However, conventional stabilizers such as cement and lime have some limitations, such as high cost, environmental impact, and durability issues. Therefore, there is a need for alternative and innovative stabilizers that can overcome these challenges. This study introduces nano-Illite, a type of clay mineral, as a novel and efective soil stabilizer. Nano-Illite can form nano-cementation (NC) in soil, which is a process of enhancing the durability of various building materials. NC is also known as nano soil-improvement (NSI), a technique that has been developed in recent years. Four formulations of micro- and nano-Illite with concentrations of 0, 1, 2, and 3% were separately added to soil samples. The unconfned compressive strength (UCS) and the secant modulus at 50% of peak stress (E50) of the treated samples were measured and compared with the untreated samples. The results showed that 3% nano-Illite increased the UCS of soil by more than 2.2 times and the E50 by more than 1.5 times after 7 days of curing. Micro-Illite also improved the UCS and E50 of soil, but to a lesser extent. X-ray fuorescence (XRF), scanning electron microscopy (SEM), and X-ray difraction (XRD) analyses revealed the micro- and nano-structures of the soil specimens and the performance of Illite as a nano-additive. This research demonstrates the efectiveness of nano-Illite in soil improvement as a NSI technique, and its potential to replace or reduce the use of conventional stabilizers. This study also contributes to the understanding of the mechanisms and factors that infuence the NC process in soil.
-
Microbe Cultivation Guidelines to Optimize Rhamnolipid Applications
- Ilona Kłosowska-Chomiczewska
- Adam Macierzanka
- Karol Parchem
- Pamela Miłosz
- Sonia Sarach
- Iga Płaczkowska
- Weronika Hewelt-Belka
- Christian Jungnickel
In the growing landscape of interest in natural surfactants, selecting the appropriate one for specific applications remains challenging. The extensive, yet often unsystematized, knowledge of microbial surfactants, predominantly represented by rhamnolipids (RLs), typically does not translate beyond the conditions presented in scientific publications. This limitation stems from the numerous variables and their interdependencies that characterize microbial surfactant production. We hypothesized that a computational recipe for biosynthesizing RLs with targeted applicational properties could be developed from existing literature and experimental data. We amassed literature data on RL biosynthesis and micellar solubilization and augmented it with our experimental results on the solubilization of triglycerides (TGs), a topic underrepresented in current literature. Utilizing this data, we constructed mathematical models that can predict RL characteristics and solubilization efficiency, represented as logPRL = f(carbon and nitrogen source, parameters of biosynthesis) and logMSR = f(solubilizate, rhamnolipid (e.g. logPRL), parameters of solubilization), respectively. The models, characterized by robust R2 values of respectively 0.581-0.997 and 0.804, enabled the ranking of descriptors based on their significance and impact — positive or negative — on the predicted values. These models have been translated into ready-to-use calculators, tools designed to streamline the selection process for identifying a biosurfactant optimally suited for intended applications.
-
Microextraction by packed sorbent: Uncommon detection techniques, sorbents, samples and analytes
- Vasil Andruch
- Alina Kalyniukova
- Tanya Yordanova
- Justyna Płotka-Wasylka
- Viera Vojteková
- Gokhan Zengin
Among sample preparation approaches, the most desirable are procedures that ensure high efficiency and reproducibility, that are cheap, fast and simple, that minimize the number of operational steps and that require a small amount of sample and solvent and are thus environmentally friendly. Microextraction by packed sorbent (MEPS) is a miniaturized form of solid-phase extraction, the use of which has been continuously expanding since its introduction in 2004. This technique can be considered green, and due to its many advantages, it has been widely accepted and used for sample pretreatment prior to instrumental analysis. This mini-review deals with the presentation and discussion of atypical, less described approaches and solutions with the MEPS technique, especially in regard to the detection techniques and sorbents used, the samples analyzed and the analytes determined. We hope this review will interest, inspire and motivate readers to explore new MEPS applications.