Pokaż publikacje z roku
-
Pokaż wszystkie publikacje z roku 2025
-
Pokaż wszystkie publikacje z roku 2024
-
Pokaż wszystkie publikacje z roku 2023
-
Pokaż wszystkie publikacje z roku 2022
-
Pokaż wszystkie publikacje z roku 2021
-
Pokaż wszystkie publikacje z roku 2020
-
Pokaż wszystkie publikacje z roku 2019
-
Pokaż wszystkie publikacje z roku 2018
-
Pokaż wszystkie publikacje z roku 2017
-
Pokaż wszystkie publikacje z roku 2016
-
Pokaż wszystkie publikacje z roku 2015
-
Pokaż wszystkie publikacje z roku 2014
-
Pokaż wszystkie publikacje z roku 2013
-
Pokaż wszystkie publikacje z roku 2012
-
Pokaż wszystkie publikacje z roku 2011
-
Pokaż wszystkie publikacje z roku 2010
-
Pokaż wszystkie publikacje z roku 2009
-
Pokaż wszystkie publikacje z roku 2008
-
Pokaż wszystkie publikacje z roku 2007
-
Pokaż wszystkie publikacje z roku 2006
-
Pokaż wszystkie publikacje z roku 2005
-
Pokaż wszystkie publikacje z roku 2004
-
Pokaż wszystkie publikacje z roku 2003
-
Pokaż wszystkie publikacje z roku 2002
-
Pokaż wszystkie publikacje z roku 2001
-
Pokaż wszystkie publikacje z roku 2000
-
Pokaż wszystkie publikacje z roku 1999
-
Pokaż wszystkie publikacje z roku 1998
-
Pokaż wszystkie publikacje z roku 1988
-
Pokaż wszystkie publikacje z roku 1987
-
Pokaż wszystkie publikacje z roku 1980
Publikacje z roku 2024
Pokaż wszystkie-
Microfluidically Frequency-Reconfigurable Compact Self-Quadruplexing Tunable Antenna with High Isolation Based on Substrate Integrated Waveguide
- Rusan Kumar Barik
- Sławomir Kozieł
This communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-ohm microstrip feed-lines to these four quarter-mode cavity resonators enables quad-band operation with self-quadruplexing capabilities. The feed lines are organized orthogonally and off-center, which leads to port isolation greater than 32.3 dB. An equivalent network model is developed to validate the proposed antenna. To realize frequency reconfigurability, two microfluidic channels corresponding to each port are created by engraving the bottom surface of the cavity. To create a reconfigurable self-quadruplexing antenna, the channels are either filled with air or dielectric liquids of higher permittivity, so that the design offers independent tunability of the operating frequencies. As a proof of concept, the prototype of a self-quadruplexing tunable antenna is fabricated and validated through measurements. The antenna prototype occupies a footprint area of 0.37λg2. The design exhibits frequency tuning ranges of 350 MHz (8.3%), 500 MHz (10.3%), 610 MHz (11.2%), and 845 MHz (14.1%) for the first, second, third, and fourth operating bands, respectively. In all bands and across the entire tuning range, the realized gains of the designed antenna exceed 4.05 dBi. The electromagnetic modeling responses agree extremely well with the measured characteristics.
-
Microfluidically Frequency-Reconfigurable Self-Quadruplexing Antenna Based on Substrate Integrated Square-Cavity
- Rusan Kumar Barik
- Sławomir Kozieł
In this article, a novel concept of self-quadruplexing tunable antenna (SQTA) enabled by microfluidic channels is investigated. The operating channels are either filled with air or dielectric liquids to enable frequency tunability. The proposed SQTA is implemented on the substrate-integrated square-cavity (SISC). A swastika-shaped slot is milled on the top-surface of the SISC to create four quarter-mode resonators. The resonators are excited by four 50-Ω microstrip lines to enable independent operating bands with self-quadruplexing properties. The working principle is validated by a custom-developed lumped-circuit model. The port isolations are better than 27dB due to the orthogonal and off-centered port allocation. Subsequently, two microfluidic channels corresponding to each quarter-mode resonator are milled from bottom-surface of the cavity. These two channels are filled with liquids of various permittivity to achieve frequency tunability. As a proof-of-concept, a prototype of the proposed SQTA is fabricated and demonstrated experimentally. The fabricated SQTA operates at 4.05-4.56 GHz, 4.645-5.295 GHz, 5.45-6.325 GHz, and 6.19-7.265 GHz. The measured realized gains of the SQTA are 4.4-4.5 dBi, 4.5-4.6 dBi, 4.8-4.9 dBi, and 4.9-4.95 dBi.
-
Microplastics in water resources: Global pollution circle, possible technological solutions, legislations, and future horizon
- Saeed S. Albaseer
- Hussein Al-Hazmi
- Tonni Agustiono Kurniawan
- Xianbao Xu
- Sameer A.M. Abdulrahman
- Peyman Ezzati
- Sajjad Habibzadeh
- Henner Hollert
- Navid Rabiee
- Eder C. Lima
- Michael Badawi
- Mohammad Saeb
Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 μg·g−1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.
-
Microstructural evolution and mechanical behavior of activated tungsten inert gas welded joint between P91 steel and Incoloy 800HT
- Vishwa Bhanu
- J. Manoj
- Ankur Gupta
- Dariusz Fydrych
- Chandan Pandey
This study examines the welded joint between P91 steel and Incoloy 800HT using the Activated Tungsten Inert Gas (A-TIG) welding process. The focus is on analyzing the microstructure and evaluating the mechanical properties of joints made with different compositions of activating flux. Owing to the reversal of the Marangoni effect in which the conventional direction of molten metal flow in the weld pool is reversed due to the application of oxide-based fluxes, a complete depth of penetration of 8 mm was successfully achieved. Conducting mechanical tests, such as microhardness, tensile, and Charpy impact toughness tests, elucidates the behavior of the welded specimens under different loading conditions. The findings highlight the effects of grain size, dislocations, and the evolution of fine-sized precipitates in the high-temperature matrix. This study highlights the importance of choosing suitable flux compositions to achieve consistent penetration and dilution in the base metals. Insights into different failure modes and the influence of temperature on the tensile strength were evaluated. Beneficial mechanical properties of the joints (meeting the criteria of ISO and ASTM standards) were found: ultimate tensile strength of 585 ± 5 MPa, elongation 38 ± 2%, impact toughness of 96 5 J, and maximum microhardness of 345 ± 5 HV.
-
Microstructure and mechanical properties of a dissimilar metal welded joint of Inconel 617 and P92 steel with Inconel 82 buttering layer for AUSC boiler application
- Amit Kumar
- Sachin Sirohi
- Manohar Singh
- Dariusz Fydrych
- Chandan Pandey
The application of the novel dissimilar metal welded (DMW) joint, utilizing Inconel 617 and P92 steel, was showcased in the advanced ultra-supercritical (AUSC) boiler. The work has been performed to investigate the effect of Inconel 82 (ERNiCr-3) buttering layer on microstructure and mechanical properties (high-temperature tensile strength, impact strength and microhardness) of gas tungsten arc welded (GTAW) dissimilar joint between Inconel 617 and P92 steel fabricated using the Inconel 617 (ERNiCrCoMo-1) filler. For optical microscopy and scanning electron microscopy (SEM), samples were machined along a transverse direction which comprised the butter layer, weld metal, and heat-affected zone of both sides. The energy-dispersive X-ray spectroscopy (EDS) was used to map the interface of the buttering layer and weld metal and butter layer and P92 steel. The high-temperature tensile testing and Charpy impact testing at room temperature were conducted for the integrity assessment of the welded joint. The examination of microstructure and hardness revealed that the buttering layer of Inconel 82 filler successfully mitigated a significant portion of the brittle martensitic microstructure from the coarse-grained heat-affected zone (CGHAZ), along with hardness peaks on the side of P92 steel. The conventional method of DMW joint fabrication, without the use of a buttering layer, has been demonstrated to be less favourable compared to the new fabrication method, which incorporates a buttering layer. The TiC/NbC carbides were identified in the Inconel 82 buttering layer, whereas M23C6 and Mo6C carbides were found in the Inconel 617 filler weld. Near the interface of the Inconel 82 buttering layer and P92 steel, the formation of peninsula and island structures, as well as Type I and Type II boundaries, were confirmed. Additionally, element diffusion of Ni, Cr, and Fe was observed. The tensile test results indicated an ultimate tensile strength of 620 ± 4 MPa and % elongation of 19 ± 4 % at room temperature, with fracture occurring in the buttering layer near the interface of the buttering layer and P92 steel. At temperatures of 550 °C and 650 °C, the ultimate tensile strength decreased to 448 MPa and 326 MPa, respectively, with fractures occurring in the P92 steel, irrespective of temperature. The hardness of the Inconel 82 buttering layer and Inconel 617 filler weld were 219 ± 10 HV and 248 ± 11 HV, respectively.
-
Microwave-Induced Processing of Free-Standing 3D Printouts: An Effortless Route to High-Redox Kinetics in Electroanalysis
- Kornelia Kozłowska
- Mateusz Cieślik
- Adrian Koterwa
- Krzysztof Formela
- Jacek Ryl
- Paweł Niedziałkowski
3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In this work, we present a novel effective method for the activation of composites consisting of poly(lactic acid) filled with carbon black (CB-PLA) using microwave radiation. A microwave synthesizer used in chemical laboratories (CEM, Matthews, NC, USA) was used for this purpose, establishing that the appropriate activation time for CB-PLA electrodes is 15 min at 70 °C with a microwave power of 100 W. However, the usefulness of an 80 W kitchen microwave oven is also presented for the first time and discussed as a more sustainable approach to CB-PLA electrode activation. It has been established that 10 min in a kitchen microwave oven is adequate to activate the electrode. The electrochemical properties of the microwave-activated electrodes were determined by electrochemical techniques, and their topography was characterized using scanning electron microscopy (SEM), Raman spectroscopy, and contact-angle measurements. This study confirms that during microwave activation, PLAs decompose to uncover the conductive carbon-black filler. We deliver a proof-of-concept of the utility of kitchen microwave-oven activation of a 3D-printed, free-standing electrochemical cell (FSEC) in paracetamol electroanalysis in aqueous electrolyte solution. We established satisfactory limits of linearity for paracetamol detection using voltammetry, ranging from 1.9 μM to 1 mM, with a detection limit (LOD) of 1.31 μM.
-
Mieszanki betonowe stosowane w technologii druku trójwymiarowego
- Andrzej Ambroziak
W niniejszej pracy dokonano przeglądu literatury z zakresu mieszanek i zapraw betonowych stosowanych w druku trójwymiarowym. Przegląd literatury przygotowano z zachowaniem chronologii pojawienia się danej publikacji (daty publikacji). Na podstawie przeprowadzonego przeglądu dokonano tabelarycznego zestawienia receptur mieszanek wykorzystywanych w wydrukach trójwymiarowych (3D). Przedstawiony przegląd literatury z zakresu mieszanek i zapraw betonowych stosowanych w druku trójwymiarowym można traktować jako wstęp do szczegółowych badań związanych z projektowaniem nowych typów mieszanek i receptur.
-
Migration of trace elements and radioisotopes to various fractions of solid wastes generated as a result of the sewage sludge incineration process
- Oskar Ronda
- Bartłomiej Cieślik
- Barbara Piotrowska
- Krzysztof Isajenko
- Satoki Okabayashi
- Koichi Chiba
- Motohiro Tsuboi
- Justyna Płotka-Wasylka
The research was aimed at providing new knowledge in the field of chemical characteristics of solid waste generated in the process of combustion of sewage sludge in fluidized bed furnaces. The research material consisted of disposed fluidized beds (DFB), sewage sludge ash (SSA) and air pollution control residues (APC) from three Polish installations for the thermal treatment of sewage sludge. Natural radionuclides as well as anthropogenic isotope 137Cs were determined in the tested materials and the migration of a wide spectrum of trace elements to various waste fractions generated in the process of sewage sludge combustion was examined. It was observed that both radioisotopes and most of the trace elements determined accumulate in SSA and DFB, while the APC fraction contains a much smaller amount of them. The exceptions are mercury and selenium, whose volatile compounds migrate to the exhaust gas dedusting system and accumulate in the APC fraction (up to 40 mg/kg and 13 mg/kg, respectively). A potential threat from the 226Ra isotope in SSA is identified in the context of the management of this waste in the production of building materials because the typical activity of 226Ra in SSA collected from areas with very low Ra content in natural environment exceeds 1.5–6 times the activity of this isotope in conventional cement mixtures. When managing SSA and DFB, special attention should be paid to the content of metalloids such as As, B and Se, due to the high content of mobile forms of these elements in the mentioned materials.
-
Millimeter Wave Negative Refractive Index Metamaterial Antenna Array
- Rao Aziz
- Sławomir Kozieł
- Anna Pietrenko-Dąbrowska
In this paper, a novel negative refractive index metamaterial (NIM) is developed and characterized. The proposed metamaterial exhibits negative effective permittivity (εeffe) and negative effective permeability (µeffe) at millimeter wave frequency of 28GHz. This attractive feature is utilized to enhance the gain of a microstrip patch antenna (MPA). Two thin layers of 5 5 subwavelength unit cell array of NIM are placed above a single MPA to enhance the gain of the antenna. Each unit cell has an area of 3.4 3.4 mm2. A gain increase of 7.9dBi has been observed when using the proposed NIM as a superstrate. Furthermore, the NIM array is placed over a 2 2 array of MPAs with four ports to demonstrate versatility of the metamaterial. The total size of the 2 2 antenna array system with N-MTM is about 61.1 34 16mm3 (5.71λ 3.18λ 1.5λ, where λ is the free-space wavelength at 28 GHz). The measurement result indicate that the maximum gain of the antenna array is 13.5dBi. A gain enhancement of 7.55 dB in E-Plane and 7.25 dB in H-Plane at the resonant frequency of 28 GHz is obtained. The proposed antenna structure is suitable for 5G millimeter wave communications, in particular, for possible implementation in future millimeter wave access points and cellular base stations.
-
Millimeter Wave Retrodirective Van Atta Arrays in LTCC Technology
- Kamil Trzebiatowski
- Martin Ihle
- Benedykt Sikorski
- Łukasz Kulas
- Krzysztof Nyka
The millimeter wave Van Atta arrays, intended for chipless RFID applications and fabricated in LTCC technology, are presented in this paper. The arrays are designed for 24 GHz and 60 GHz bands. The method for an easy modification of the RCS characteristic by increasing the number of single-dimensional arrays, intended for increasing the RCS level, is also presented. The LTCC manufacturing process is described in detail. The fabricated arrays are characterized in an anechoic chamber and exhibit RCS levels up to -26 dBsm with a small 51 x 17 mm footprint.
-
Millimeter Wave Wideband and Low-Loss Compact Power Divider Based on Gap Waveguide: For Use in Wideband Antenna Array System
- Arefeh Kalantari Khandani
- Ali Farahbakhsh
- Davood Zarifi
- Ashraf Uz Zaman
This paper presents a wideband and low-loss design of a compact power divider based on gap waveguide technology. The proposed power divider consists of two adjacent E-plane groove gap waveguide and a small ridge section to couple and equally divide the EM energy from the input E-plane groove gap waveguide to the two output ones in-phase. The simulation results show that the proposed waveguide power divider has about 40% impedance bandwidth while its size is 0.7λ×0.6λ at the center frequency. An 8-way power divider is designed using the proposed 2-way power divider and the back-to-back configuration of the 8-way one is fabricated to investigate the performance of the proposed design. In addition, to show the application of the presented power divider, a wideband linear horn antenna array is designed and fabricated. The measured results agree well with the simulated ones and prove the excellent low-loss and wide bandwidth of the proposed power divider over the band of interest from 50-75GHz. The measured S11 of the entire 8-way power divider remains below -10 dB level, the insertion loss is around 1 dB over the band of interest. Also, the S11 of the horn array integrated with the 8-way feed network remains below -10 dB and the low sidelobes of the radiation pattern of the entire horn array indicates excellent phase and amplitude balance for the power divider over the entire bandwidth of interest.
-
Miniaturization-Oriented Design of Spline-Parameterized UWB Antenna for In-Door Positioning Applications
- Adrian Bekasiewicz
- Tom Dhaene
- Ivo Couckuyt
- Jacek Litka
Design of ultra-wideband antennas for in-door localization applications is a challenging task. It involves development of geometry that maintains appropriate balance between the size and performance. In this work, a topologically-flexible monopole has been generated using a stratified framework which embeds a gradient-based trust-region (TR) optimization algorithm in a meta-loop that gradually increases the structure dimensionality. The optimization has been performed using a composite objective function that maintains acceptable size/performance trade-off. The final design features a reflection below –10 dB within the UWB spectrum and a small footprint of only 182 mm2. The considered method has been benchmarked against a standard TR-based routine executed directly on a multi-dimensional electromagnetic model of the antenna.
-
Miniaturized Dual-Band Bandpass Filter with Wide Inter Stopband for 5G Applications
- Earla Shankar
- Kanaparthi Phani Kumar
- Vamsi Krishna Velidi
- Sławomir Kozieł
This article presents the design of a miniaturized dual-band bandpass filter with a wide inter-stopband and improved isolation. A novel topology comprising the series connection of shunt cascaded coupled lines and quarter-wavelength open stubs is proposed to realize the dual-band filter along with half-wavelength stepped-impedance stubs. The circuit characteristics contain nine transmission zeros and four poles. The transmission zeros frequencies of the dual-band filter response have been theoretically verified using even-odd mode analysis. For experimental validation purposes, a dual-band filter with a center frequency ratio of 5.17 covering 5G applications (N12 & N48) has been implemented and fabricated using the microstrip technology. The full-wave simulated and measured filter responses are in good congruence.
-
Minikin’s equation mistake — a mystic art of systems of measuring units
- Waldemar Magda
This paper deals with one of the most controversial equations in coastal engineering — the so-called Minikin’s equation, describing the impact pressure due to wave breaking on a vertical-wall caisson of a composite breakwater. This equation has been used worldwide for many years, although it has been reported many times to overestimate real values of the impact pressure measured in nature and in the laboratory. Units of measurement, problems with dimensionality of parameters and conversion between different unit systems were suspected as causes. This paper explores in rigorous detail the reason behind the problems associated with Minikin’s equation. After a thorough literature review and a detailed analysis of all previously published forms of Minikin’s equation, a question of coherence/incoherence of systems of measuring units has been specially addressed. By adopting the incoherent English Engineering system of units, the most proper and satisfactory explanation of the curious mistake in Minikin’s formula has been found and formally correct forms of the equation, followed by appropriate units of measurement, are presented.
-
Minimization of a ship's magnetic signature under external field conditions using a multi-dipole model
- Mirosław Wołoszyn
- Jarosław Tarnawski
The paper addresses the innovative issue of minimizing the ship's magnetic signature under any external field conditions, i.e., for arbitrary values of ambient field modulus and magnetic inclination. Varying values of the external field, depending on the current geographical location, affect only the induced part of ship's magnetization. A practical problem in minimizing the ship signature is separating permanent magnetization from induced magnetization. When the ship position changes, a signature measurement has to be made under new magnetic field conditions to update the currents in the coils. This is impractical or even difficult to do (due to the need for a measuring ground), so there is a need to predict the ship's magnetization value in arbitrary geographical location conditions based on the reference signature determined on the measuring ground. In particular, the model predicting the signatures at a new geographical location must be able to separate the two types of magnetization, as permanent magnetization is independent of external conditions. In this paper, a FEM model of the vessel is first embedded in an external field and permanent magnetization is simulated using DC coils placed inside the model. Then, using the previously developed rules for data acquisition and determination of model parameters, a multi-dipole model is synthesized in which the induced and permanent parts are separated. The multi-dipole model thus developed has been successfully confronted with the initial model in FEM environment. The separation of permanent and induced magnetization allows the latter to be scaled according to new values of the external field. In the paper, the situation of determining a signature at one geographical position and its projection onto two other positions is analyzed. Having determined the signature with a high degree of accuracy anywhere in the world, it is possible to perform classical signature minimization by determining DC currents in coils placed inside the ship's hull. The paper also analyzes the effectiveness of ship's signature minimization and the influence of ship's course on the signature value. The advantage of the method presented in this paper is an integrated approach to the issue of scaling and minimization of ship magnetic signature, which has not been presented in the literature on such a scale before.
-
M-integral for finite anti-plane shear of a nonlinear elastic matrix with rigid inclusions
- Victor Eremeev
- Konstantin Naumenko
The path-independent M-integral plays an important role in analysis of solids with inhomogeneities. However, the available applications are almost limited to linear-elastic or physically non-linear power law type materials under the assumption of infinitesimal strains. In this paper we formulate the M-integral for a class of hyperelastic solids undergoing finite anti-plane shear deformation. As an application we consider the problem of rigid inclusions embedded in a Mooney–Rivlin matrix material. With the derived M-integral we compute weighted averages of the shear stress acting on the inclusion surface. Furthermore, we prove that a system of rigid inclusions can be replaced by one effective inclusion.
-
Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations
- Paulina Kaźmierska-Grębowska
- Maciej Jankowski
- Bruce M. MacIver
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer’s Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
-
Mixed, quantum-classical description of electron density transfer in the collision process
- Paweł Wojda
- Marta Łabuda
- Sergey Kshevetskii
In this work, we investigate an ion-atom model describing the time-dependent evolution of electron density during the collision. For a S3+- H system, numerical simulations are based on classical trajectory calculations, and the electron density behaviour is described with the time-dependent Schrödinger equation. We apply the finite difference method to obtain quantitative insights into the charge transfer dynamics, providing detailed information about the spatial and temporal evolution of the collision process. The results are given for representative examples of the collision, from eV to keV range of energies, in head-on collision as well as for different values of impact parameter. A validity and precision of the proposed model and interpretation of the particle collision in terms of eigenstates are also discussed.
-
Mixed-use buildings as the basic unit that shapes the housing environment of smart cities of the future
- Mateusz Gerigk
The contemporary approach to creating the residential function is confronted with the trend of increasing the volume of buildings and expectations regarding the future urban environment focused on sustainable development. This paper presents an overview of the residential structure in the context of defined thematic scopes. Namely, it is a systemic approach to the problem of designing mixed-use buildings which create a modern residential structure in developing urban centres. The creation of smart cities from existing urban areas and newly designed centres involves comprehensively defined design guidelines. The key is the integrity and interoperability of the dynamic structure which can serve as a basis for developing new systems and/or improving the existing ones. The developed model structure for creating and maintaining the system is based on a genetic algorithm and is presented in the form of a neural network that involves the use of artificial intelligence (AI). The specific structure is intended as a tool to support supervision and decision-making in the process of designing and managing contemporary mixed-use buildings in their newly planned surroundings.
-
MnWO4/reduced graphene oxide-based electrochemical sensing platform for simultaneous detection of catechol and resorcinol
- Somayeh Tajik
- Reza Zaimbashi
- Fariba Garakani Nejad
- Mohammad Taghi Tourchi Moghadam
- Mohammad Bagher Askari
- Hadi Beitollahi
n this study, a novel electrochemical sensor for accurate and sensitive catechol determination was demonstrated employing a screen-printed graphite electrode (SPGE) modified with MnWO4/reduced graphene oxide (MnWO4/rGO) nanocomposite. The MnWO4/rGO nanocomposite has been successfully prepared by using hydrothermal technique, and it was then characterized using several microscopic and spectroscopic methods (XRD, FE-SEM, and EDS). SPGE modified with MnWO4/rGO nanocomposite compared to the unmodified SPGE by creating a synergistic effect and having unique properties (large surface area of MnWO4 nanoparticles along with high electrical conductivity and large surface area of rGO sheets) by enhancing the speed of electron transfer and effective interaction of the analyte with the electrode surface, significantly improved the efficiency of electrochemical reactions and the catalytic effect for detection of catechol. The MnWO4/rGO/SPGE response was shown to be linear with the change in catechol concentration in the concentration range of 0.01–600.0 μM under optimal conditions, and the detection limit was 0.005 μM, utilizing the differential pulse voltammetry (DPV) technique. Moreover, as a means of simultaneous detection of catechol and resorcinol, the modified SPGE demonstrated good catalytic performance. These two analytes' oxidation peaks were completely separated, with an apparent peak potential difference of 380 mV, which made it possible to determine both of these chemicals simultaneously. Eventually, catechol and resorcinol were effectively detected in water samples with acceptable recovery values.