Pokaż publikacje z roku
-
Pokaż wszystkie publikacje z roku 2025
-
Pokaż wszystkie publikacje z roku 2024
-
Pokaż wszystkie publikacje z roku 2023
-
Pokaż wszystkie publikacje z roku 2022
-
Pokaż wszystkie publikacje z roku 2021
-
Pokaż wszystkie publikacje z roku 2020
-
Pokaż wszystkie publikacje z roku 2019
-
Pokaż wszystkie publikacje z roku 2018
-
Pokaż wszystkie publikacje z roku 2017
-
Pokaż wszystkie publikacje z roku 2016
-
Pokaż wszystkie publikacje z roku 2015
-
Pokaż wszystkie publikacje z roku 2014
-
Pokaż wszystkie publikacje z roku 2013
-
Pokaż wszystkie publikacje z roku 2012
-
Pokaż wszystkie publikacje z roku 2011
-
Pokaż wszystkie publikacje z roku 2010
-
Pokaż wszystkie publikacje z roku 2009
-
Pokaż wszystkie publikacje z roku 2008
-
Pokaż wszystkie publikacje z roku 2007
-
Pokaż wszystkie publikacje z roku 2006
-
Pokaż wszystkie publikacje z roku 2005
-
Pokaż wszystkie publikacje z roku 2004
-
Pokaż wszystkie publikacje z roku 2003
-
Pokaż wszystkie publikacje z roku 2002
-
Pokaż wszystkie publikacje z roku 2001
-
Pokaż wszystkie publikacje z roku 2000
-
Pokaż wszystkie publikacje z roku 1999
-
Pokaż wszystkie publikacje z roku 1998
-
Pokaż wszystkie publikacje z roku 1988
-
Pokaż wszystkie publikacje z roku 1987
-
Pokaż wszystkie publikacje z roku 1980
Ostatnie pozycje
-
Quantumness in Diagnostics of Marine Internal Combustion Engines and Other Ship Power Plant Machines
- Jacek Rudnicki
- Jerzy Girtler
The article provides proof that the diagnostics of marine internal combustion engines and other ship power plant machines should take into account the randomness and unpredictability of certain events, such as wear, damage, the variations of mechanical and thermal loads, etc., which take place during machine operation. In the article, the energy E, like the other forms (methods) that it can be converted into (heat and work), is considered the random variable; at time t, this variable has the mean value, which is the observed value of the some statistic with an asymptotically normal distribution, irrespective of the functional form of the random variable. A proof is given that shows that the expected value estimated in the above way, considering the time t of the performance of task Z by a marine internal combustion engine or other ship power plant machine, can be used to determine the machine’s possible action (DM). When compared to the required action (DW) needed for task Z to be performed, this possible action makes it possible to formulate an operating diagnosis concerning whether the engine or machine of concern is able to perform task Z. It is assumed that an energy device of this type is able to perform a given task when the inequality DM > DW holds. Otherwise, when DM < DW, the device cannot perform the task for which it was adopted in the design and manufacturing phase, which means that it is in the incapability state, although it still can be started and convert energy into the form of heat or work.
-
Quenching of bright and dark excitons via deep states in the presence of SRH recombination in 2D monolayer materials
- Jędrzej Szmytkowski
Two-dimensional (2D) monolayer materials are interesting systems due to an existence of optically non-active dark excitonic states. In this work, we formulate a theoretical model of an excitonic Auger process which can occur together with the trap-assisted recombination in such 2D structures. The interactions of intravalley excitons (bright and spin-dark ones) and intervalley excitons (momentum-dark ones) with deep states located in the energy midgap have been taken into account. The explanation of this process is important for the understanding of excitonic and photoelectrical processes which can coexist in 2D materials, like transition metal dichalcogenides and perovskites.
-
Quiet Quitting and its Link With Knowledge Risks in Organizations – Theoretical Insights
- Martyna Gonsiorowska
- Małgorzata Zięba
Purpose: Quiet quitting has become a widely publicized concept, driven by social media in the United States and other countries in 2022. It is a term used to describe the phenomenon by which employees do the least amount of their work, just enough to meet the requirements of one’s job description (Mahand and Caldwell, 2023). The trend is spreading quickly among young workers. It can potentially harm individuals, job performance, innovativeness, and whole businesses. Moreover, this phenomenon can also pose several knowledge risks. This conceptual paper aims to identify and analyse human knowledge risks resulting from quiet quitting. Design/methodology/approach: This present study makes an update on the literature linking knowledge risks arising and quiet quitting. Originality/value: To the best knowledge of the authors, there are no publications that describe the knowledge risks arising from quiet quitting. This paper offers new insights for researchers dealing with the topic of knowledge risks in the context of human behaviours. Practical implications: The paper provides insight for each practitioner, as the issue addressed concerns the majority of incumbent employees. Especially, employers and managers should become aware of the consequences related to knowledge risks arising from quiet quitting.
-
RAGE as a Novel Biomarker for Prostate Cancer: A Systematic Review and Meta-Analysis
- Catherine C. Applegate
- Michael B. Nelappana
- Elaine A. Nielsen
- Leszek Kalinowski
- Iwona T. Dobrucki
- Lawrence W. Dobrucki
The receptor for advanced glycation end-products (RAGE) has been implicated in driving prostate cancer (PCa) growth, aggression, and metastasis through the fueling of chronic inflammation in the tumor microenvironment. This systematic review and meta-analysis summarizes and analyzes the current clinical and preclinical data to provide insight into the relationships among RAGE levels and PCa, cancer grade, and molecular effects. A multi-database search was used to identify original clinical and preclinical research articles examining RAGE expression in PCa. After screening and review, nine clinical and six preclinical articles were included. The associations of RAGE differentiating benign prostate hyperplasia (BPH) or normal prostate from PCa and between tumor grades were estimated using odds ratios (ORs) and associated 95% confidence intervals (CI). Pooled estimates were calculated using random-effect models due to study heterogeneity. The clinical meta-analysis found that RAGE expression was highly likely to be increased in PCa when compared to BPH or normal prostate (OR: 11.3; 95% CI: 4.4–29.1) and that RAGE was overexpressed in high-grade PCa when compared to low-grade PCa (OR: 2.5; 95% CI: 1.8–3.4). In addition, meta-analysis estimates of preclinical studies performed by albatross plot generation found robustly positive associations among RAGE expression/activation and PCa growth and metastatic potential. This review demonstrates that RAGE expression is strongly tied to PCa progression and can serve as an effective diagnostic target to differentiate between healthy prostate, low-grade PCa, and high-grade PCa, with potential theragnostic applications.
-
Rainwater chemistry composition in Bellsund: Sources of elements and deposition discrepancies in the coastal area (SW Spitsbergen, Svalbard)
- Sara Lehmann-konera
- Ruman Marek
- Marcin Frankowski
- Łukasz Małarzewski
- Krzysztof Raczyński
- Filip Pawlak
- Kozioł Krystyna
- Żaneta Polkowska
Discrepancies in rainfall chemistry in Bellsund were found to be influenced by the orographic barrier and related to the variability in the inflow of air masses as well as to the distance of sampling sites from the sea and thus the extent of sea spray impact. This study covers measurements of rainfall (P) and air temperature (T), physicochemical parameters (pH, specific electrolytic conductivity (SEC), major ions (Cl , NO3 , SO4 2 ) and elements (Na, Ca, Mg, K), as well as trace elements (i.a. As, Cd, Cr, Fe, Co, Pb, Ni, Zn) and dissolved organic carbon (DOC) in 22 rainfall samples collected in August on the Calypsostranda marine terrace and in the forefield of a landterminating glacier (NW Wedel Jarlsberg Land). The comparison of chemical parameters in the samples revealed major discrepancies, including statistically significant higher rainwater pH and SEC, and the levels of Ag, As, Bi, Ca, Co, Fe, Li, Mn, Mo, Ni, Pb, Sb, and V, deposited near the seashore (Calypsostranda) than in the glacier forefield. Cluster analysis (CA) showed that elements deposited in lower concentrations at the glacier forefield site came from predominately anthropogenic sources. Conversely, CA results of metals and metalloids deposited on the Calypsostranda marine terrace indicate both natural and anthropogenic sources. A correlation matrix and principal component analysis (PCA) permitted identifying two primary factors affecting rainfall chemistry at each of the study sites. In Calypsostranda, these were the inflow of relatively unpolluted cold air (F1 = 35.1%) and sea spray (F2 = 27.6%), while in the glacier forefield the factors were an orographic barrier (F1 = 37.3%) and the inflow of polluted warm air (F2 = 25.2%).
-
Rapid and Reliable Re-Design of Miniaturized Microwave Passives by Means of Concurrent Parameter Scaling and Intermittent Local Tuning
- Sławomir Kozieł
- Anna Pietrenko-Dąbrowska
Re-design of microwave passive components for the assumed operating frequencies or substrate parameters is an important yet a tedious process. It requires simultaneous tuning of relevant circuit variables, often over broad ranges thereof, to ensure satisfactory performance of the system. If the operating conditions at the available design are distant from the intended ones, local optimization is typically insufficient, whereas global search entails excessive computational expenses. The problem is aggravated for miniaturized components, typically featuring large numbers of geometry parameters. Furthermore, owing to their tightly-arranged layouts, compact structures exhibit considerable cross-coupling effects. In order to reliably evaluate electrical characteristics under such conditions full-wave electromagnetic (EM) analysis is mandatory. Needless to say, EM-driven design over broad ranges of operating frequencies is an arduous and costly endeavor. In this paper, we introduce a novel procedure for rapid and reliable re-design of microwave passives. Our methodology involves concurrent scaling of geometry parameters interleaved with local (gradient-based) tuning. The scaling stage allows for low-cost relocation of the operating frequencies of the circuit, whereas the optimization stage ensures continuous (iteration-wise) alignment of the performance figures with their target values. The presented framework is validated using several miniaturized microstrip couplers, re-designed over extended ranges of the center frequencies. For all considered structures, satisfactory designs are successfully identified despite the initial designs being distant from the targets, whereas local tuning turns out to be demonstrably inferior. Apart from its efficacy, one of the most important advantages of the proposed framework is its simplicity, and the lack of problem-dependent control parameters.
-
Rapid Antenna Optimization with Restricted Sensitivity Updates by Automated Dominant Direction Identification
- Anna Pietrenko-Dąbrowska
- Sławomir Kozieł
Meticulous tuning of geometry parameters turns pivotal in improving performance of antenna systems. It is more and more often realized using formal optimization methods, which is demonstrably the most efficient way of handling multiple design variables, objectives, and constraints. Although in some cases a need for launching global search arises, a typical design scenario only requires local optimization, especially when a decent initial design can be rendered using engineering experience or parametric studies. At the same time, antenna optimization is typically conducted using full-wave electromagnetic (EM) simulations, which entails considerable computational expenses. In this paper, we introduce a novel procedure for expedited antenna tuning. Its fundamental mechanism is to restrict the antenna response sensitivity updates to the selected dominant directions within the parameter space, determined based on the problem-specific knowledge, in particular, the estimated changes of antenna characteristics when moving across one-dimensional affine subspaces spanned by these directions. Thus, the said dominant directions affect the most the responses of the antenna structure under design as assessed using the introduced metrics. The decision making process concerning the number of directions to be used relies on quantification of the aggregated system response variability metrics. The proposed approach is demonstrated by means of several antenna structures and benchmarked against conventional trust-region algorithm, but also its accelerated versions. The results indicate considerable (up to over 60%) speedup over the reference procedure without noticeable quality degradation.
-
Rapid Design of 3D Reflectarray Antennas by Inverse Surrogate Modeling and Regularization
- Sławomir Kozieł
- Mehmet Belen
- Alper Caliskan
- Peyman Mahouti
Reflectarrays (RAs) exhibit important advantages over conventional antenna arrays, especially in terms of realizing pencil-beam patterns without the employment of the feeding networks. Unfortunately, microstrip RA implementations feature narrow bandwidths, and are severely affected by losses. A considerably improved performance can be achieved for RAs involving grounded dielectric layers, which are also easy to manufacture using 3D printing technology. Regardless of the implementation details, a practical bottleneck of RA design is the necessity of independent adjustment of a large number of unit cells, which has to be carried out using full-wave electromagnetic (EM) simulation models to ensure reliability. The associated computational costs are extraordinary. A practical workaround is the incorporation of surrogate modeling methods; however, a construction of accurate metamodel requires a large number of training data samples. This letter introduces an alternative RA design approach, where the unit cells are adjusted using an inverse surrogate model established with a small number of anchor points, pre-optimized for the reference reflection phases. To ensure solution uniqueness, the anchor point optimization involves regularization, here, based on the minimum-volume condition for the unit cell. The presented approach reduces the computational cost of RA design to a few dozens of EM analyses of the cell. Several demonstration examples are provided, along with an experimental validation of the selected RA realization.
-
Rapid multi-criterial design of microwave components with robustness analysis by means of knowledge-based surrogates
- Sławomir Kozieł
- Anna Pietrenko-Dąbrowska
Manufacturing tolerances and uncertainties concerning material parameters, e.g., operating conditions or substrate permittivity are detrimental to characteristics of microwave components. The knowledge of relations between acceptable parameter deviations (not leading to violation of design specifications) and the nominal performance (not considering uncertainties), and is therefore indispensable. This paper proposes a multi-objective optimization technique of microwave components with tolerance analysis. The goal is to identify a set of trade-off designs: nominal performance versus robustness (quantified by the maximum input tolerance values that allow for achieving 100-percent fabrication yield). Our approach exploits knowledge-driven regression predictors rendered using characteristic points (features) of the component’s response for a rapid evaluation of statistical performance figures, along with trust-region algorithm to enable low execution cost as well as convergence. The proposed methodology is verified with the use of three microstrip circuits, a broadband filter, and two branch-line couplers (a single- and a dual-band one). It is demonstrated that a Pareto set w.r.t. nominal performance and robustness objectives can be produced using only 40 to 60 EM simulations of the respective structure (per design). Reliability of the proposed algorithm is corroborated with the use of EM-based Monte Carlo simulation.
-
Rating by detection: an artifact detection protocol for rating EEG quality with average event duration
- Daniel Węsierski
- Mehrdad Rahimzadeh Rufuie
- Olga Milczarek
- Wojciech Ziembla
- Paweł Ogniewski
- Anna Kołodziejak
- Paweł Niedbalski
Quantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real EEG optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment. This study proposes a novel, principled approach for quantitatively evaluating algorithmically corrected EEG without access to ground truth in real-world conditions. Our offline evaluation protocol uses a detector to score the presence of artifacts. It computes their average duration, which measures the recovered EEG's deviation from the modeled background activity with a single score. As we expect the detector to make generalization errors, we employ a generic and configurable Wiener-based artifact removal method to validate the reliability of our detection protocol. Quantitative experiments extensively compare many Wiener filters and show their consistent rankings agree with their theoretical assumptions and expectations. The rating-by-detection protocol with the average event duration (AED) measure should be of value for EEG practitioners and developers. After removing artifacts from real EEG, the protocol experimentally shows that reliable comparisons between many artifact filtering configurations are possible despite the missing ground-truth neural signals.
-
RCDs Tripping in the Range from DC to AC 50 kHz for Slowly Rising Residual Current
- Hanan Tariq
- Stanisław Czapp
- Vitaly Levashenko
The wide use of power electronic converters means that in many low-voltage systems earth fault currents containing components from DC to AC of various frequencies have to be taken into account. Due to the tendency to increase the modulation frequency in converters, components of higher frequencies may be in the order of several tens of kilohertz. Therefore, it is very important to verify the behavior of devices for protection against electric shock in the presence of earth currents with frequencies other than the nominal frequency of the network, as well as for a DC component. The paper presents the results of tests of residual current devices (RCDs), with slowly rising earth/residual current at selected frequencies within the range 1 Hz – 50 kHz, and at pure DC. Tests have shown that RCDs may not respond to certain frequencies and pure DC, which carries a risk of electric shock.
-
Reactions of cobalt(ii) chloride and cobalt(ii) acetate with hemisalen-type ligands: ligand transformation, oxidation of cobalt and complex formation. Preliminary study on the cytotoxicity of Co(ii) and Co(iii) hemisalen complexes
- Magdalena Siedzielnik
- Monika Pawłowska
- Mateusz Daśko
- Hubert Kleinschmidt
- Anna Dołęga
Several molecular cobalt(II) complexes, one Co(II) coordination polymer, and one ionic cobalt(III) complex with imine hemisalen ligands were synthesized. The hemisalen ligands were synthesized from o-vanillin (oVP) and diverse aminopyridines (compounds HL1–HL4) or aminophenol (compound HL5). It was observed that cobalt(II) chloride in dry acetonitrile catalyzes a transformation of HL1 and HL3 instead of complex formation. The conversion of these imines proceeded via self-cyclization to N-2′′-pyridyl-2,6- dioxo-9-aza-[c,g]di-2′-methoxybenzononan or its methyl derivative as the major product. The remaining reactions were performed using imines HL1–HL5 and cobalt(II) acetate Co(Ac)2 in methanol or DMSO/acetonitrile resulting in forming of a series of cobalt complexes. The following series of compounds was obtained: two similar tetrahedral molecular Co(II) complexes [Co(L1)2] and [Co(L3)2], one trinuclear, mixed-ligand Co3(Ac)2(L4)2(oVP)2, one coordination polymer {Co(L2)2}N and finally one octahedral anionic Co(III) complex [HNEt3][Co(L5)3]. The latter complex formed in a cobalt(II) acetate reaction with a hemisalen HL5 derived from oVP and 2-aminophenol. The molecular structures of all compounds were confirmed by X-ray diffraction, and the cytotoxicity of Co(II) and Co(III) complexes towards cancer cell lines HCT116, HL-60, and normal cell line MRC-5 was studied.
-
Reactive imines: Addition of 2-aminopyrimidine to the imine bond and isolation of the aminal from the equilibrium mixture aminal/imine
- Magdalena Siedzielnik
- Andrzej Okuniewski
- Kinga Kaniewska-Laskowska
- Marcin Erdanowski
- Anna Dołęga
The reaction between o-vanillin and 2-aminopyrimidine leads to the formation of a single crystalline product: aminal, 1, which results from the reaction of the initially formed imine with 2-aminopyrimidine. The reaction was followed by the NMR spectroscopy. VT NMR studies prove that in solution two major species are observed: aminal and imine and their ratio depends on the time or/and temperature with the imine content increasing over time. One factor responsible for the non-typical course of the reaction between the aldehyde (o-vanillin) and 2-aminopyrimidine is the increased reactivity of the resulting imine, which easily undergoes nucleophilic addition. With the use of DFT calculations combined with experimental results we prove that the dual descriptor is the best parameter in predicting the increased reactivity of the imine bond. The calculations confirmed that the imine derived from o-vanillin and 2-aminopyrimidine is a reactive species. Another factor that determines the course of the reaction is relatively facile crystallization of aminal due to the extensive network of strong and weak hydrogen bonds. Several metal ions were tested as templating partners but no metal-imine complex could be isolated. Instead we have obtained and characterized structurally several metal ion complexes with o-vanillinate and 2-aminopyrimidine as ligands.
-
Reactivity of triphosphinoboranes towards H3B·SMe2: access to derivatives of boraphosphacycloalkanes with diverse substituents
- Anna Ordyszewska
- Jarosław Chojnacki
- Rafał Grubba
Triphosphinoboranes activated the B–H bond in the BH3 molecule without any catalysts at room temperature. Hydroboration reactions led to boraphosphacyloalkanes with diverse structures. The outcomes of reactions depend on the size of the phosphanyl substituent on the boron atom of the parent triphosphinoborane, where derivatives of boraphosphacyclobutane and boraphosphacyclohexane were obtained. Furthermore, the precursor of triphosphinoboranes, namely bromodiphosphinoborane, also exhibited high reactivity towards H3B·SMe2, yielding bromo-substituted boraphosphacyclobutane. The obtained products were characterized by heteronuclear NMR spectroscopy, single crystal X-ray diffraction, and elemental analysis.
-
Reaktory elektrochemiczne w przemyśle - konstrukcja i zastosowania
- Dominika Parasińska
- Grzegorz Skowierzak
- Tadeusz Ossowski
Z biegiem lat reakcje elektrochemiczne przestały być postrzegane jedynie jako eksperymenty laboratoryjne lub proste baterie. Chociaż mechanizm reakcji i budowa prostych reaktorów znana jest ludzkości już od ponad 100 lat w ostatnich latach można zauważyć największy wzrost zainteresowania tą dziedziną. Nowy stale opracowywane są lepsze projekty budowy reaktorów. Modyfikacje to nie tylko rodzaje i formy materiałów, z których wykonane są elektrody są wykonywane, ale także metody rozdzielania, postać elektrolitu czy metodę przepływu prądu. Tak szeroki zakres innowacji pozwolił na rozwój nowe, coraz ciekawsze zastosowania tych procesów. Obecność Metody elektrochemiczne można spotkać w przemyśle w procesach otrzymywania odczynniki chemiczne, metale i bardziej złożone związki, takie jak leki, a także rafinacja metali poprzez galwanizację. Ponadto w wielu przypadkach stosuje się elektrochemię przyrządy analityczne jako czujnik, na przykład przy pomiarach pH. Aspekt wykorzystanie reaktorów elektrochemicznych do celów energetycznych jako źródła energii elektrycznej generacji, która nie emituje szkodliwych substancji zanieczyszczających i nie wymaga dalszego wykorzystania paliwa kopalne również zyskują coraz większe znaczenie. Ponadto dzięki elektrolizie istnieje także możliwość wytwarzania wodoru, który oprócz wielu innych zastosowaniach, zaczyna także odgrywać coraz większą rolę jako nowe, nieszkodliwe paliwo. Nie należy również zapominać o rozwijaniu możliwości oczyszczanie ścieków z większą efektywnością niż dotychczasowe metody oczyszczania, zwłaszcza małych ilości związków. Ten artykuł ma na celu przegląd obu ostatnich opracowane metody budowy reaktorów elektrochemicznych, a także ich zakres zastosowań i możliwości dalszego rozwoju tych metod.
-
Recent advancements in molecularly imprinted polymers for the removal of heavy metal ions and dyes
- Muhammad Khan
- Shan E Zehra Syeda
- Anna Skwierawska
Contamination set off by highly toxic metal ions and dyes is a big threat to the environment and living beings. Various industries like metal plating, mining, pesticides, battery manufacturing, and dyeing release metal ions and toxic dyes directly into the water. It is necessary to remove these toxic substances from the environment. Molecular imprinting technology (MIT) got a lot of attention in the last two decades because of several advantages over conventional adsorption technologies. Molecularly imprinted polymers (MIPs) are compatible with natural antibodies having the highest selectivity due to specific recognition sites for the template molecules. Selectivity is the major advantage of MIP, any targeted heavy metal ions and dyes can be separated efficiently. Various polymerization procedures can be used for the MIP preparation started by self-assembled monomers surrounding the molecules of the template because of the “monomer functional groups and template” interchange. Various studies have been made for the removal of metal ions and dyes from water and excellent results have been attained. Continuous research developments are being done for real applications of MIPs to remove toxic environmental substances that are not only harmful to humans and other organisms but also disturb the ecological balance. This review represents the development of current MIPs, advantages as well as disadvantages exhibited from various angles to complete a roadmap towards industrial and commercial use of MIPs.
-
Recent advances in 3D bioprinted tumor models for personalized medicine
- Przemysław Gnatowski
- Edyta Piłat
- Justyna Kucińska-Lipka
- Mohammad Saeb
- Michael R. Hamblin
- Masoud Mozafari
Cancerous tumors are among the most fatal diseases worldwide, claiming nearly 10 million lives in 2020. Due to their complex and dynamic nature, modeling tumors accurately is a challenging task. Current models suffer from inadequate translation between in vitro and in vivo results, primarily due to the isotropic nature of tumors and their microenvironment's relationship. To address these limitations, hydrogel-based 3D bioprinting is emerging as a promising approach to mimic cancer development and behavior. It provides precise control over individual elements' size and distribution within the cancer microenvironment and enables the use of patient-derived tumor cells, rather than commercial lines. Consequently, hydrogel bioprinting is expected to become a state-of-the-art technique for cancer research. This manuscript presents an overview of cancer statistics, current modeling methods, and their limitations. Additionally, we highlight the significance of bioprinting, its applications in cancer modeling, and the importance of hydrogel selection. We further explore the current state of creating models for the five deadliest cancers using 3D bioprinting. Finally, we discuss current trends and future perspectives on the clinical use of cancer modeling using hydrogel bioprinting.
-
Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods
- Balbina Makurat-Kasprolewicz
- Agnieszka Ossowska
Nowadays, titanium and its alloys are widely used materials in implantology. Nevertheless, the greatest challenge is still its appropriate surface treatment in order to induce optimal properties, which facilitates formation of a permanent bond between the implant and human tissue. The use of electrochemical treatment such as anodic oxidation or plasma electrolytic oxidation allows for the production of porous coating that mimics the bone structure and accelerates the osseointegration process. The literature shows that the morphology, thickness, crystallinity, chemical composition, mechanical properties and corrosion resistance of coatings, as well as their bioactivity, strongly depend on the parameters of electrochemical processes (voltage, duration, composition and temperature of the electrolyte). The purpose of this study is to review, summarize, and analyze the latest accomplishments and trends in the development of coatings used in implantology, produced with the use of electrochemical oxidation and micro arc oxidation. Recent progress and future challenges associated with the surface modification of titanium and its alloy for biomedical applications have been discussed.
-
Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters
- Jose R. Aguilar Cosme
- Roberto Castro-Muñoz
- Vahid Vatanpour
Water treatment is one of the main approaches for producing drinking water from contaminated water sources which is challenging due to the presence of a variety of substances requiring removal. The fabrication of nanocomposite membranes relies either on filling nanomaterials into polymeric phases before membrane fabrication, or coating of nanomaterials on the fabricated membrane surface. The removal of organic compounds from potable waters requires processes such as microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Since most nanomaterials display interesting organic compound uptakes from aqueous systems, nanocomposite membranes have been tested in the removal of various substances from potable waters. Currently, many membrane processes necessitate more advanced and well-designed selective barriers that may guarantee both permeation and separation efficiency. The progresses and breakthroughs on nanocomposite membranes in remediating potable waters are reported, highlighting novel composite formulations and emphasizing recent advances and outcomes in the field.
-
Recent advances of selected passive heat transfer intensification methods for phase change material-based latent heat energy storage units: A review
- Michał Rogowski
- Rafał Andrzejczyk
The following article overviews recent studies regarding heat transfer enhancement methods, explicitly focusing on fins and coils utilization, in phase change material-based latent heat thermal energy storage systems. It discusses the influence of various geometrical and material parameters on the melting and solidification processes, as well as the orientation of the heat transfer surface within the storage tank. Additionally, the article examines the use of a range of phase change materials regarding their melting temperature. Results show that there are research gaps regarding a few ranges of phase change materials of certain previously studied melting points. This paper's main goal was to detect possible research gaps within the phase change studies field. It should be highlighted that a vast amount of numerical studies of both finned and coiled geometries is in need of experimental verification. More than 62% of analyzed studies were performed numerically, while only 37% were performed experimentally. What is more, there were only a few studies concerning experimental investigations for melting temperatures higher than 60 °C. Furthermore, the majority of experimental as well as numerical studies were concerned only with melting phenomena. This paper also advocates for more standardized studies regarding coil geometries using non-dimensional parameters.
-
Recent applications and future prospects of magnetic biocatalysts
- Rafael Leandro Fernandes Melo
- Misael Bessa Sales
- Viviane de Castro Bizerra
- Paulo Gonçalves de Sousa Junior
- Antônio Luthierre Gama Cavalcante
- Tiago Melo Freire
- Francisco Simão Neto
- Muhammad Bilal
- Teofil Jesionowski
- João Maria Soares
- Pierre Basílio Almeida Fechine
- José Cleiton Sousa dos Santos
Magnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, achieving easy recovery and reuse in biotechnological processes. Lipases immobilized by magnetic nanoparticles dominate. This review covers an advanced bibliometric analysis and an overview of the area, elucidating research advances. Using WoS, 34,949 publications were analyzed and refined to 450. The prominent journals, countries, institutions, and authors that published the most were identified. The most cited articles showed research hotspots. The analysis of the themes and keywords identified five clusters and showed that the main field of research is associated with obtaining biofuels derived from different types of sustainable vegetable oils. The overview of magnetic biocatalysts showed that these materials are also employed in biosensors, photothermal therapy, environmental remediation, and medical applications. The industry shows a significant interest, with the number of patents increasing. Future studies should focus on immobilizing new lipases in unique materials with magnetic profiles, aiming to improve the efficiency for various biotechnological applications.
-
Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: a review
- Lubos Kristak
- Petar Antov
- Pavlo Bekhta
- Muhammad Adly Rahandi Lubis
- Apri Heri Iswanto
- Roman Reh
- Jan Sedliacik
- Viktor Savov
- Hamid R. Taghiyari
- Antonios N. Papadopoulos
- Antonio Pizzi
- Aleksander Hejna
Traditional wood-based panels are produced with synthetic, formaldehyde-based adhesives, commonly made from fossil-derived constituents, such as urea, phenol, melamine, etc. Along with their numerous advantages, such as chemical versatility, high reactivity and excellent adhesive performance, these adhesives are characterized by certain problems, connected with the hazardous volatile organic compounds (VOCs), mostly free formaldehyde in the adhesives and the formaldehyde emission from the finished wood composites, which is carcinogenic to humans and harmful to the environment. The growing environmental concerns and stringent legislative requirements to the formaldehyde emission from wood-based panels have posed new challenges to researchers and industrial practice, related to the development of sustainable, eco-friendly wood-based panels with close-to-zero formaldehyde emission. The most common methods to reduce the formaldehyde emission from wood-based panels have been to decrease the free formaldehyde in the adhesive by modifying the adhesive (like lowering the molar ratio of formaldehyde to urea in UF resin) or by using formaldehyde scavengers, one group of scavengers being for adhesives by mixing or reacting and the second one scavengers for wood-based panels as post-treatments. Another way is to use alternative bio-based adhesives, however, there are still substantial challenges for the complete replacement of formaldehyde-based adhesives with bio-based adhesives, mainly because of their relatively low bonding strength, poor water resistance, etc. This article presents a review and analysis of the current state of research in the field of low formaldehyde emission wood adhesives and formaldehyde scavengers for manufacturing low-toxic, eco-friendly wood composites.
-
Reception of Terrestrial DAB+ and FM Radio with a Mobile Device: A Subjective Quality Evaluation
- Przemysław Falkowski-Gilski
Nowadays, terrestrial broadcasting enables to receive content anytime and everywhere. People can obtain information both with a portable or desktop receiver, which include pocket-sized devices as well as high-end Hi-Fi equipment, not to mention car audio systems. Numerous manufacturers include FM-compatible chipsets in a variety of user equipment (UE), including mobile phones. However, digital radio signal processing modules, such as, i.e., Digital Audio Broadcasting plus (DAB+), are not that popular. Currently, only one smartphone available on the market offers such possibilities This paper examines the reception quality of terrestrial digital DAB+ and analog FM radio with the use of a mobile device. The study was carried out on a number of broadcasts simulcasted in both standards, and involved a group of 30 listeners aged between 20–25 years old. Next, results were compared with subjective scores obtained using a high-end desktop radio receiver. The aim of this work is to determine whether small size mobile UE can offer high-quality reception, and whether a smartphone can compete with a traditional indoor receiver. Results of carried out studies may aid and inspire devices manufacturers as well as content and service providers, speeding up the whole digitization process.
-
Rectangular Waveguide Filters Based on Deformed Dual-Mode Cavity Resonators
- Michał Baranowski
- Łukasz Balewski
- Adam Lamęcki
- Michał Mrozowski
In this paper, a novel design for rectangular waveguide filters with deformed dual-mode (DM) cavity resonators is demonstrated. The new resonant cavity shape is a result of applying shape deformation to the basic rectangular cavity to enable its dual-mode operation. Internal coupling between the two orthogonal cavity modes is realized by geometry deformation, eliminating the need for additional coupling elements. The designs are developed within the constraints of 3-D printing to allow their fabrication in one piece. In addition, the design method used results in models with smooth surfaces, which is highly desirable for high-power and low-loss applications. A deformed DM cavity is analyzed and a single cavity second-order filter is designed and presented. Finally, two types of fourth-order filters with transmission zeros are designed by combining two deformed DM cavities and their performance is verified experimentally by a 3D-printed prototype.
-
Recycling of photovoltaic modules - legal status, technology, market prospects
- Jakub Łukasik
- Jan Wajs
The increase in the number of manufactured and installed photovoltaic modules and the growing concern about the insufficient supply of pure silicon imply the need to take action to develop infrastructure for recycling PV modules. The article presents a multifaceted analysis of the current state of development of the photovoltaic module recycling sector from a global and national perspective. The essence of the issue was introduced in the context of the rapid growth of the solar energy sector in recent years. Various technologies for the production of PV cells were presented, categorized according to their generations. The available methods of recycling the most popular on the market silicon crystal modules (I generation) and thin-film modules (II generation) were presented, as well as innovative techniques that are currently in the stage of laboratory research. The current legal status dedicated to recycling processes and requirements for effective waste processing are discussed. In the face of the ongoing energy transformation and forecasts on the increase in installed capacity in photovoltaics in Poland and worldwide, the prospects for the development of this market in the future have been outlined.
-
Red Kale (Brassica oleracea L. ssp. acephala L. var. sabellica) Induces Apoptosis in Human Colorectal Cancer Cells In Vitro
- Kamila Rachwał
- Iwona Niedźwiedź
- Adam Waśko
- Tomasz Laskowski
- Paweł Szczeblewski
- Wirginia Kukula-Koch
- Magdalena Polak-Berecka
This article presents the results of studies investigating the effect of red kale (Brassica oleracea L. ssp. acephala L. var. sabellica) extract on cancer cells (HT-29). The cytotoxicity of the red kale extract was assessed using MTT and LDH assays, while qRT-PCR was employed to analyze the expression of genes associated with the p53 signaling pathway to elucidate the effect of the extract on cancer cells. Furthermore, HPLC-ESI-QTOF-MS/MS was applied to identify bioactive com- pounds present in red kale. The obtained results indicated that red kale extract reduced the viability and suppressed the proliferation of HT-29 cells (the IC50 value of 60.8 μg/mL). Additionally, mRNA expression analysis revealed significant upregulation of several genes, i.e., casp9, mapk10, mapk11, fas, kat2 b, and ubd, suggesting the induction of cell apoptosis through the caspase-dependent path- way. Interestingly, the study revealed a decrease in the expression of genes including cdk2 and cdk4 encoding cell cycle-related proteins, which may lead to cell cycle arrest. Furthermore, the study identified certain bioactive compounds, such as sinigrin, spirostanol, hesperetin and usam- barensine, which could potentially contribute to the apoptotic effect of red kale extracts. However, further investigations are necessary to elucidate the specific role of these individual compounds in the anti-cancer process.
-
Rediscovering Automatic Detection of Stuttering and Its Subclasses through Machine Learning—The Impact of Changing Deep Model Architecture and Amount of Data in the Training Set
- Piotr Filipowicz
- Bożena Kostek
This work deals with automatically detecting stuttering and its subclasses. An effective classification of stuttering along with its subclasses could find wide application in determining the severity of stuttering by speech therapists, preliminary patient diagnosis, and enabling communication with the previously mentioned voice assistants. The first part of this work provides an overview of examples of classical and deep learning methods used in automated stuttering classifications as well as databases and features used. Then, two classical algorithms (k-NN (k-nearest neighbor) and SVM (support vector machine) and several deep models (ConvLSTM; ResNetBiLstm; ResNet18; Wav2Vec2) are examined on the available stuttering dataset. The experiments investigate the influence of individual signal features such as Mel-Frequency Cepstral Coefficients (MFCCs), pitch-determining features in the signal, and various 2D speech representations on the classification results. The most successful algorithm, i.e., ResNet18, can classify speech disorders at the F1 measure of 0.93 for the general class. Additionally, deep learning shows superiority over a classical approach to stuttering disorder detection. However, due to insufficient data and the quality of the annotations, the results differ between stuttering subcategories. Observation of the impact of the number of dense layers, the amount of data in the training set, and the amount of data divided into the training and test sets on the effectiveness of stuttering event detection is provided for further use of this methodology.
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
- Sławomir Kozieł
- Anna Pietrenko-Dąbrowska
- Ullah Ubaid
Development of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based modeling for real-world microwave components is hindered by a high nonlinearity of the system characteristics, dimensionality issues, and broad ranges of operating parameters the model should cover to make it practically useful. Performance-driven modeling frameworks deliver a partial mitigation of these problems through appropriate spatial orientation of the metamodel domain, which only encapsulates high-quality designs and not the entire space. Unfortunately, the initial model setup cost is high, as defining the domain requires database designs that need to be a priori acquired. This paper introduces a novel approach, where the database designs are replaced by random observables, and dimensionality of the domain is reduced using spectral analysis thereof. The major contributions of the work include implementation of the explicit dimensionality reduction of the confined surrogate model domain and introducing this concept into a complete cost-efficient framework for modeling of microwave components. Comprehensive benchmarking demonstrates excellent performance of the introduced framework, both in terms of predictive power of the rendered surrogates, their scalability properties, as well as low computational overhead associated with the model setup.
-
Reducing nighttime light exposure in the urban environment to benefit human health and society
- Karolina Zielińska-Dąbkowska
- Eva S. Schernhammer
- John, P. Hanifin
- George Brainard
Nocturnal light pollution can have profound effects on humans and other organisms. Recent research indicates that nighttime outdoor lighting is increasing rapidly. Evidence from controlled laboratory studies demonstrates that nocturnal light exposure can strain the visual system, disrupt circadian physiology, suppress melatonin secretion, and impair sleep. There is a growing body of work pointing to adverse effects of outdoor lighting on human health, including the risk of chronic diseases, but this knowledge is in a more nascent stage. In this Review, we synthesize recent research on the context-specific factors and physiology relevant to nocturnal light exposure in relation to human health and society, identify critical areas for future research, and highlight recent policy steps and recommendations for mitigating light pollution in the urban environment.
-
Reducing the Uncertainty of the Moving Object Location Measurement with the Method of Quasi-Multiple Measurement in GNSS Technology in Symmetrical Arrangement
- Jacek Skibicki
- Andrzej Wilk
- Władysław Koc
- Roksana Licow
- Jacek Szmagliński
- Piotr Chrostowski
- Sławomir Judek
- Krzysztof Karwowski
- Sławomir Grulkowski
The article presents a solution to the problem of limited accuracy of dynamic measurements performed with GNSS receivers. The proposed measurement method is a response to the needs related to the assessment of the measurement uncertainty of the position of the track axis of the rail transport line. However, the problem of reducing the measurement uncertainty is universal for many different situations where high accuracy of positioning of objects is required, especially in motion. The article proposes a new method to determine object’s location using geometric constraints of a number of GNSS receivers arranged in symmetric configuration. The proposed method has been verified by comparing signals recorded by up to five GNSS receivers during stationary and dynamic measurements. The dynamic measurement was made on a tram track within the framework of a cycle of studies upon effective and efficient methods to catalogue and diagnose tracks. A detailed analysis of the results obtained with the quasi-multiple measurement method confirms remarkable reduction in their uncertainty. Their synthesis shows the usability of this method in dynamic conditions. The proposed method is expected to find application in measurements requiring high accuracy, and in case of deterioration of the signal quality from satellites by one or more of GNSS receivers due to the appearance of natural obstacles.
-
Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface
- Przemysław Podulka
- Wojciech Macek
- Ricardo Branco
- Reza Masoudi Nejad
Characterization of surface topography, roughly divided into measurement and data analysis, can be valuable in the process of validation of the tribological performance of machined parts. Surface topography, especially the roughness, can respond straightly to the machining process and, in some cases, is defined as a fingerprint of the manufacturing. When considering the high precision of surface topography studies, the definition of both S-surface and L-surface can drive many errors that influence the analysis of the accuracy of the manufacturing process. Even if precise measuring equipment (device and method) is provided but received data are processed erroneously, the precision is still lost. From that matter, the precise definition of the S-L surface can be valuable in the roughness evaluation allowing a reduction in the rejection of properly made parts. In this paper, it was proposed how to select an appropriate procedure for the removal of the L- and S- components from the raw measured data. Various types of surface topographies were considered, e.g., plateau-honed (some with burnished oil pockets), turned, milled, ground, laser-textured, ceramic, composite, and, generally, isotropic. They were measured with different (stylus and optical) methods, respectively, and parameters from the ISO 25178 standard were also taken into consideration. It was found that commonly used and available commercial software methods can be valuable and especially helpful in the precise definition of the S-L surface; respectively, its usage requires an appropriate response (knowledge) from the users.
-
Reduction of CO2 Emissions from Offshore Combined Cycle Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels
- Wojciech Olszewski
- Marek Dzida
- Van Giao Nguyen
- Dao Nam Cao
Diverse forms of environmental pollution arise with the introduction of materials or energy that exert adverse effects on human health, climate patterns, ecosystems, and beyond. Rigorous emission regulations for gases resulting from fuel combustion are being enforced by the European Union and the International Maritime Organization (IMO), directed at maritime sectors to mitigate emissions of SOx, NOx, and CO2. The IMO envisions the realisation of its 2050 targets through a suite of strategies encompassing deliberate reductions in vessel speed, enhanced ship operations, improved propulsion systems, and a transition towards low and zero-emission fuels such as LNG, methanol, hydrogen, and ammonia. While the majority of vessels currently depend on heavy fuel or low-sulphur fuel oil, novel designs integrating alternative fuels are gaining prominence. Technologies like exhaust gas purification systems, LNG, and methanol are being embraced to achieve minimised emissions. This study introduces the concept of a high-power combined ship system, composed of a primary main engine, a diesel engine, and a steam turbine system, harnessing the energy contained within the flue gases of the main combustion engine. Assumptions, constraints for calculations, and a thermodynamic evaluation of the combined cycle are outlined. Additionally, the study scrutinises the utilisation of alternative fuels for ship propulsion and their potential to curtail exhaust emissions, with a specific focus on reducing CO2 output
-
Reduction of exceeding the guaranteed service time for external trucks at the DCT Gdańsk container terminal using a six sigma framework
- Karol Moszyk
- Mariusz Deja
Purpose The purpose of this research was to investigate ways to reduce the average amount of exceeded guaranteed service time for external trucks at Deepwater Container Terminal Gdańsk Sp z o.o. (DCT Gdańsk) via dosing the gate activities, in particular IN-Gate entry process of trucks carrying import/export/transit containers. Design/methodology/approach A Six Sigma methodology with the DMAIC methods along with the SIPOC chart, cause and effect diagram, scatterplot, benchmark and brainstorming and finally multi-voting tool are used as analyses tools in this research. Findings Deepwater Container Terminal Gdańsk Sp z o.o. (DCT Gdańsk) reorganized and modernized the Gate Operations. Gate reorganization and modernization includes streaming line traffic at the gates, external parking lot optimization, implementation of dedicated supporting software and installation of dedicated CCTV cameras to provide 24h life view. During gates development, the external truck service times data were collected and analysed. The obtained materials concerned the measurement of the average truck turnaround time before and after the implementation of the improvements. Originality/value The proposed approach of reducing the average amount of exceeded guaranteed service time of external trucks at the container terminal is unique and relatively cheap mainly due to organisational changes with some widely available low-cost investments and can be applied on a different scale to other container terminals or to transport and logistics companies.
-
Reemission of inorganic pollution from permafrost? A freshwater hydrochemistry study in the lower Kolyma basin (North-East Siberia)
- Danuta Szumińska
- Kozioł Krystyna
- Sergey R. Chalov
- Vasilii A. Efimov
- Marcin Frankowski
- Sara Lehmann-konera
- Żaneta Polkowska
Permafrost regions are under particular pressure from climate change resulting in widespread landscape changes, which impact also freshwater chemistry. We investi- gated a snapshot of hydrochemistry in various freshwater environments in the lower Kolyma river basin (North-East Siberia, continuous permafrost zone) to explore the mobility of metals, metalloids and non-metals resulting from permafrost thaw. Partic- ular attention was focused on heavy metals as contaminants potentially released from the secondary source in the permafrozen Yedoma complex. Permafrost creeks represented the Mg-Ca-Na-HCO3-Cl-SO 4 ionic water type (with mineralisation in the range 600–800 mg L1 ), while permafrost ice and thermokarst lake waters were the HCO 3-Ca-Mg type. Multiple heavy metals (As, Cu, Co, Mn and Ni) showed much higher dissolved phase concentrations in permafrost creeks and ice than in Kolyma and its tributaries, and only in the permafrost samples and one Kolyma tributary we have detected dissolved Ti. In thermokarst lakes, several metal and metalloid dis- solved concentrations increased with water depth (Fe, Mn, Ni and Zn – in both lakes; Al, Cu, K, Sb, Sr and Pb in either lake), reaching 1370 μg L1 Cu, 4610 μg L1 Mn, and 687 μg L1 Zn in the bottom water layers. Permafrost-related waters were also enriched in dissolved phosphorus (up to 512 μg L1 in Yedoma-fed creeks). The impact of permafrost thaw on river and lake water chemistry is a complex problem which needs to be considered both in the context of legacy permafrost shrinkage and the interference of the deepening active layer with newly deposited anthropogenic contaminants.
-
Reinforcing and plasticizing effects of reclaimed rubber on the vulcanization and properties of natural rubber
- Teng Ren
- Pan Song
- Weihong Yang
- Krzysztof Formela
- Shifeng Wang
The production of high-added value reclaimed rubber (RR) is of great signifi-cance for the sustainability of rubber industries. To green recycle waste rub-bers and broaden the application of RR, a RR material with potentialreinforcing and plasticizing effects on nature rubber (NR) composites are pre-pared by a thermo-oxidative reclamation process. The reclamation degree ofRR is controlled by adjusting the content of soybean oil. The plasticizing effectis demonstrated by the decrease of torque during vulcanization and theenhancement of elongation at break of NR/RR composites with the increasingreclamation of RR. The tensile strength of NR/RR composites is enhanced byadding the RR, and the existence of RR also improves the thermal stability andrheological properties of NR/RR composites. The formation of new bound rub-ber in NR/RR compound indicates the reinforcing ability of RR. In addition,the average particle size of RR reaches nano-scale according to scanning elec-tron microscope photographs and its dispersion in NR/RR compounds isimproved with the increasing reclamation degree of RR as shown in Payneeffect. This work demonstrates the reinforcing and plasticizing ability of theRR, which is beneficial to improving the added value of reclaimed and broad-ening its application.
-
Rekordowe liczby pierwsze
- Marek Kubale
Problem liczb pierwszych ma długą historię sięgającą czasów starożytnych. W śród liczb całkowitych liczby pierwsze grają rolę analogiczną do pierwiastków w chemii.
-
Relationship between Chemical Structure and Biological Activity Evaluated In Vitro for Six Anthocyanidins Most Commonly Occurring in Edible Plants
- Izabela Koss-Mikołajczyk
- Agnieszka Bartoszek-Pączkowska
Numerous studies have provided evidence that diets rich in anthocyanins show a broad spectrum of health benefits. Anthocyanins in nature are usually found in the form of glycosides. Their aglycone forms are called anthocyanidins. The chemical structure of anthocyanins is based on the flavylium cation, but they differ in the position and number of substituents. However, the bioactives and foods that contain them are frequently treated as a uniform group of compounds exhibiting the same biological activity, without paying attention to the structural differences between individual anthocyanidins. The aim of this study was to find out how structural differences impact the biological activity of the six most common dietary anthocyanidins, i.e., delphinidin (Dp), petunidin (Pt), cyanidin (Cd), malvidin (Mv), pelargonidin (Pg) and peonidin (Po). The study concentrated on redox-related phenomena and compared the following parameters: antioxidant activity (measured using various methods: spectrophotometric tests (ABTS, DPPH), ORAC assay and CAA test (cellular antioxidant activity)), the ability to inhibit growth of human colon cancer cells (HT29; determined using MTT assay), and the ability of studied compounds to protect DNA from oxidative damage (comet assay). Based on the obtained results, the relationship between the structure of studied antho- cyanidins and their biological activity was assessed. The obtained results revealed that the number and position of the hydroxyl and methoxy groups in the anthocyanidin structure strongly influenced not only the color of anthocyanidins but most of all their antioxidant and biological activities.
-
Release of Encapsulated Bioactive Compounds from Active Packaging/Coating Materials and Its Modeling: A Systematic Review
- Shahida Anusha Siddiqui
- Shubhra Singh
- Nur Alim Bahmid
- Taha Mehany
- Douglas J. H. Shyu
- Elham Assadpour
- Narjes Malekjani
- Roberto Castro Munoz
- Seid Mahdi Jafari
The issue of achieving controlled or targeted release of bioactive compounds with specific functional properties is a complex task that requires addressing several factors, including the type of bioactive, the nature of the delivery system, and the environmental conditions during transportation and storage. This paper deals with extensive reporting for the identification of original articles using Scopus and Google Scholar based on active packaging as a novel packaging technology that controls the release of antimicrobial agents encapsulated into carriers in the food packaging systems. For evidence-based search, the studies were extracted from 2015 to 2020 and screened using the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Following the review and screening of publications, 32 peer-reviewed articles were subjected to systematic analysis. The preliminary search indicated that the encapsulation of bioactives enhances their bioavailability and stability. From a theoretical viewpoint, mathematical models play an important role in understanding and predicting the release behavior of bioactives during transportation and storage, thus facilitating the development of new packaging material by a systematic approach. However, only a few studies could formulate parameters for mathematical models in order to achieve the specific release mechanism regulated for the quality and safety of foods. Therefore, this paper will cover all encapsulation approaches, active packaging, and mathematical modeling in the food industry into structural form and analyze the challenges faced by the complex nature of active packaging in real food systems.
-
Release systems based on self-assembling RADA16-I hydrogels with a signal sequence which improves wound healing processes
- Maria Dzierżyńska
- Justyna Sawicka
- Milena Deptula
- Paweł Sosnowski
- Piotr Sass
- Barbara Peplińska
- Zuzanna Pietralik-Molińska
- Martyna Fularczyk
- Franciszek Kasprzykowski
- Jacek Zieliński
- Maciej Kozak
- Paweł Sachadyn
- Michal Pikula
- Sylwia Rodziewicz-Motowidło
Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR. The peptide hybrids were investigated for their structural aspects using circular dichroism, thiofavin T assay, transmission electron microscopy, and atomic force microscopy, as well as their rheological properties and stability in diferent fuids such as water or plasma, and their susceptibility to digestion by enzymes present in the wound environment. In addition, the morphology of the RADA-peptide hydrogels was examined with a unique technique called scanning electron cryomicroscopy. These experiments enabled us to verify if the designed peptides increased the bioactivity of the gel without disturbing its gelling processes. We demonstrate that the physicochemical properties of the designed hybrids were similar to those of the original RADA16-I. The materials behaved as expected, leaving the active motif free when treated with elastase. XTT and LDH tests on fibroblasts and keratinocytes were performed to assess the cytotoxicity of the RADA16-I hybrids, while the viability of cells treated with RADA16-I hybrids was evaluated in a model of human dermal fibroblasts. The hybrid peptides revealed no cytotoxicity; the cells grew and proliferated better than after treatment with RADA16-I alone. Improved wound healing following topical delivery of RADA-GHK and RADA-KGHK was demonstrated using a model of dorsal skin injury in mice and histological analyses. The presented results indicate further research is warranted into the engineered peptides as scaffolds for wound healing and tissue engineering.
-
Reliability Analysis of Data Storage Using Survival Signature and Logic Differential Calculus
- Patrik Rusnak
- Peter Sedlacek
- Stanisław Czapp
The Data storage system is an important part of any information system. All the necessary data that must be available for the successful operation of the information system are stored here. Therefore, it is advisable to think about the reliability of such a data storage system. As part of reliability engineering, it is possible to perform a reliability analysis of any system. Therefore, the data storage system can be analyzed as well. As part of the reliability analysis, it is necessary to select the mathematical representation of the analyzed system. One such form is the structure function. A structure function is a mathematical representation of the analyzed system that maps the state of a system based on the state of its components. Main advantage is that the structure function can be used to describe a system of any complexity. However, if we have components of the same type in the system, the survival signature may be used as well. The structure function as well as the survival signature permits the use of multiple mathematical approaches such as logic differential calculus. Logic differential calculus can be used to detect situations where a change in the number of working components affects a change in the state of the system. This is useful in importance analysis, which is a part of the reliability analysis. In this paper, a reliability analysis will be performed for data storage in which multiple types of hard disk drives can be used as well as multiple methods of storing data on multiple disks using redundant array of independent disks.
-
Reliability estimation of underground horizontal fuel tank limit states
- Przemysław Sorn
- Mateusz Sondej
- Jarosław Górski
Fuel tanks are designed with regard to standard loads and operating conditions. The investigations of the paper show the impact of such factors as tank corrosion and other means on the variation of stress fields and deformation of the underground horizontal tank shell. The introduction of probabilistic methods allows for structural reliability assessment. While the computational time of the entire tank FEM model is high, the preliminary analysis is restricted to the structural part only. The analysis makes it possible to optimize the structure with regard to construction costs
-
Reliable computationally-efficient behavioral modeling of microwave passives using deep learning surrogates in confined domains
- Sławomir Kozieł
- Nurullah Calik
- Peyman Mahouti
- Mehmet Belen
The importance of surrogate modeling techniques has been steadily growing over the recent years in high-frequency electronics, including microwave engineering. Fast metamodels are employed to speedup design processes, especially those conducted at the level of full-wave electromagnetic (EM) simulations. The surrogates enable massive system evaluations at nearly EM accuracy and negligible costs, which is invaluable in parameter tuning, multi-objective optimization, or uncertainty quantification. Nevertheless, modeling of electrical characteristics of microwave components is impeded by nonlinearity of their electrical characteristics, the need for covering broad parameter ranges, as well as dimensionality issues. Recently, a two-stage modeling approach has been proposed, which addresses some of these issues by constraining the surrogate model domain to only include high-quality designs, thereby reducing the cardinality of the dataset required to establish an accurate metamodel. In this paper, a novel technique is proposed, which combines the two-stage modeling concept with Multi-head Deep Regression Network (MHDRN) surrogates customized to handle responses of microwave passives over wide ranges of operating frequencies and geometry parameters. Using three microstrip circuits, a superior performance of the proposed modeling framework is demonstrated with respect to multiple state-of-the-art benchmark methods. In particular, the relative RMS error is shown to reach the level of less than three percent for the datasets consisting of just a few hundred samples.
-
Remediation of soils on municipal rendering plant territories using Miscanthus × giganteus
- Anna Grzegórska
- Natalia Czaplicka
- Jacek Antonkiewicz
- Piotr Rybarczyk
- Agnieszka Baran
- Krzysztof Dobrzyński
- Dawid Zabrocki
- Andrzej Rogala
Phytoremediation, as a cost-effective, highly efficient, environmentally friendly, and green approach, gained attention to the removal of metals, including heavy metals, from contaminated soils. The toxic nature of heavy metals can have an adverse effect on human health and the ecosystem, and their removal remains a worldwide problem. Therefore, in this study, a field experiment was carried out to evaluate the potential of Miscanthus × giganteus for the removal of ten microelements and heavy metals (Al, Zn, Fe, Pb, Cd, Co, Cr, Cu, Mn, Ni) from contaminated soil in the territory of a Municipal Waste Rendering Plant. Moreover, the effect of the incorporation of soil improver obtained upon composting biodegradable waste as well as the addition of highly contaminated post-industrial soil on the efficiency of phytoremediation and plant growth was described. The soil improver (SK-8) was applied to the soil at a rate of 200 Mg ha−1 and 400 Mg‧ha−1. Meanwhile, in the last object, 100 Mg‧ha−1 of highly contaminated post-industrial soil was added. Herein, the research was aimed at assessing the possibility of phytoextraction of heavy metals from soils with different physicochemical properties. The results showed that plants cultivated in soil with 400 Mg‧ha−1 of soil improver exhibited the highest yield (approximately 85% mass increase compared to the soil without additives). Furthermore, the application of a single dose of SK-8 (200 Mg ha−1) increased the uptake of Al, Fe, Co, Pb, Mn, Ni, and Cd by Miscanthus × giganteus compared to the soil without additives. Additionally, the performed biotests demonstrated no or low toxicity of the investigated soils affecting the test organisms. However, in all experiments, the phytorecovery of the elements did not exceed 1% of the amount introduced to the soil, which may result from a short cultivation period and large doses of SK-8 or highly contaminated post-industrial soil.
-
Removal of Arsenic from Wastewater Using Hydrochar Prepared from Red Macroalgae: Investigating Its Adsorption Efficiency and Mechanism
- Aisha Khanzada
- Muhammad Rizwan
- Hussein Al-Hazmi
- Joanna Majtacz
- Tonni Agustiono Kurniawan
- Jacek Makinia
Arsenic (As) is a prominent carcinogen component produced via both geogenic and anthropogenic processes, posing serious risks to human health. This study aimed to investigate the potential of hydrochar prepared from red macroalgae for removing As from synthetic wastewater. The hydrochar was produced through 5 h hydrothermal carbonization (HTC) treatment at 200 °C, and then, chemically activated with ferric chloride hexahydrate (FeCl3·6H2O). SEM analysis revealed a permeable structure of hydrochar, while FTIR analysis detected the occurrence of several functional groups at the hydrochar interface. EDS analysis showed an increase in carbon concentration after FeCl3·6H2O activation. Hydrochar was then tested in batch experiments to investigate its As removal efficiency, with ICP-MS used to determine the levels of As after the adsorption process. The results showed that As removal efficiency increased with increasing initial As concentration from 50 to 250 mg/L, and the highest As removal efficiency was 84.75% at a pH of 6, initial concentration of 0.25 mg/L, and adsorbent dose of 1000 mg at 120 min. The Langmuir isotherm model supported the occurrence of homogeneous adsorption over the surface of hydrochar, while the pseudo-second-order model confirmed the chemisorptive nature of the process.
-
Removal of cyclohexane vapors from air in biotrickling filters: Effects of gas mixture composition and circular economy approach
- Piotr Rybarczyk
- Bartosz Szulczyński
- Dominik Dobrzyniewski
- Karolina Kucharska
- Jacek Gębicki
This work presents results of investigations on biotrickling filtration of air polluted with cyclohexane co-treated in binary, ternary and quaternary volatile organic compounds (VOCs) mixtures, including vapors of hexane, toluene and ethanol. The removal of cyclohexane from a gas mixture depends on the physicochemical properties of the co-treated VOCs and the lower the hydrophobicity of the VOC, the higher the removal efficiency of cyclohexane. In this work, the performance of biotrickling filters treating VOCs mixtures is discussed based on surface tension of trickling liquid for the first time. A mixed natural – synthetic packing for biotrickling filters was utilized, showing promising performance and limited maintenance requirements. Maximum elimination capacity of about 95 g/(m 3·h) of cyclohexane was reached for the total VOCs inlet loading of about 450 g/(m 3·h). This work presents also a novel approach of combining biological air treatment with management of a spent trickling liquid in the perspective of circular economy assumptions. The waste liquid phase was applied to the plant cultivation, showing a potential for e.g. enhanced production of energetic biomass or polluted soil phytoremediation.
-
Renovation works in buildings in the area of former defensive fortifications
- Maciej Niedostatkiewicz
- Tomasz Majewski
- Adam Baryłka
he paperpresents the Complex of Buildings which was created in Gdańsk as a result of the reconstruction and development of the remains of the defensive fortifications of Redita Napoleońska. Some of the buildings of the Building Complex, after many years of operation, were in an emergency condition and required urgent renovation and repair work. The papercontains a detailed analysis of the technicalcondition of individual buildings of the Building Complex and analyzes the impact of the current use and the lack of regular periodic repairs on the technical efficiency of these facilities. Conceptual solutions in the field of renovation and repair workswere also presented, the purpose of which was to bring the objects in question to the proper technical condition.
-
Representativity of ISO test track surface based on controlled pass-by measurements
- Truls Berge
- Piotr Mioduszewski
Within the Polish-Norwegian research project ELANORE, a limited Round Robin Test has been performed on four ISO tracks in Northern Europe. The basic objective of the project is to improve the EU directive on labelling of tyres for noise and rolling resistance. This directive is based on the measurement procedures proscribed in the UNECE Reg.117. Measurements on 3 ISO tracks were performed in 2021 and presented at InterNoise 2022. This paper adds results from tests conducted on a fourth ISO track as well as on trafficked roads with different conventional pavements: 2 in Norway (MA11 and SMA16) and 3 in Poland (SMA8, SMA11 and EACC). On all ISO test tracks and road test sites the same car, test tyres and test equipment as well as the same personnel were used to minimize the measurement uncertainties. Measurements were done using the controlled pass-by (CPB) method for vehicle test speeds between 40 and 90 km/h, with 2 test conditions: according to Reg.117 and with so-called "light test conditions". The main conclusion is that the noise ranking of the tyres on both, the ISO tracks and conventional pavements do not correspond to the ranking based on the label values given by tyre manufacturers.
-
Requirements for Residual Current Devices Intended for Electric Vehicle Charging Systems
- Stanisław Czapp
The properties of residual current devices have been presented from the point of view of their ability to detect a specific shape of the residual current waveform. Moreover, the standard requirements relating to residual current protection used in electric vehicle charging installations have been pointed out. The operating characteristics of the IC-CPD and RDC-DD protections, which are intended for charging electric vehicles in mode 2 and mode 3, respectively, have been also discussed.
-
RESEARCH ON HYDRODYNAMIC PEEK JOURNAL BEARINGS LUBRICATED WITH WATER AND OIL
- Tomasz Żochowski
- Artur Olszewski
- Michał Wasilczuk
The main purpose of the research was to determine the possibilities and experimentally test the benefits of replacing conventional oil lubrication with ecological water lubrication. Tests were carried out on a test rig for hydrodynamic radial bearings under conditions representative of the expected applications for the bearing in water turbines. Bearings made from the polymer material PEEK (polyether ether ketone) were tested under static loads. The tests were carried out for two types of lubrication: pure water and oil, with a viscosity of ISO VG 46. A comparison of friction coefficients and load-carrying capacity for both lubricants was made. During the tests, an interesting phenomenon of polymer material running in was observed for relatively high pressures when lubricated with a very low-viscosity lubricating medium, i.e., water (pressures in the bearing over 2 MPa).
-
Research on the effect of low-sulphur marine fuels on the dynamic characteristics of a CI engine
- Zbigniew Korczewski
The implementation of low-sulphur, so-called modified marine fuels into operation requires prior labora- tory engine tests to assess the energy, emission and structural effects of their usage. This type of research are carried out on the test bed of a diesel engine as a small-scale physical model that reproduces the adequate design and process (parametric) features of a full-size marine engine. Their key stage is to determine the energy characteristics of the engine in the steady state of operation determined on the basis of the analysis of the developed indicator diagram and the dynamic characteristics of the transient processes from idling to the reference steady state of load – and vice versa. In this way, the basic diagnostic parameters of the fuel usable quality are determined: the rate of pressure increase in the cylinder and the average deceleration of the engine crankshaft within the strenuous transient process. This article presents representative results of this type of research carried out on six different, low-sulphur marine fuels used to feed marine engines.