Pokaż publikacje z roku
-
Pokaż wszystkie publikacje z roku 2025
-
Pokaż wszystkie publikacje z roku 2024
-
Pokaż wszystkie publikacje z roku 2023
-
Pokaż wszystkie publikacje z roku 2022
-
Pokaż wszystkie publikacje z roku 2021
-
Pokaż wszystkie publikacje z roku 2020
-
Pokaż wszystkie publikacje z roku 2019
-
Pokaż wszystkie publikacje z roku 2018
-
Pokaż wszystkie publikacje z roku 2017
-
Pokaż wszystkie publikacje z roku 2016
-
Pokaż wszystkie publikacje z roku 2015
-
Pokaż wszystkie publikacje z roku 2014
-
Pokaż wszystkie publikacje z roku 2013
-
Pokaż wszystkie publikacje z roku 2012
-
Pokaż wszystkie publikacje z roku 2011
-
Pokaż wszystkie publikacje z roku 2010
-
Pokaż wszystkie publikacje z roku 2009
-
Pokaż wszystkie publikacje z roku 2008
-
Pokaż wszystkie publikacje z roku 2007
-
Pokaż wszystkie publikacje z roku 2006
-
Pokaż wszystkie publikacje z roku 2005
-
Pokaż wszystkie publikacje z roku 2004
-
Pokaż wszystkie publikacje z roku 2003
-
Pokaż wszystkie publikacje z roku 2002
-
Pokaż wszystkie publikacje z roku 2001
-
Pokaż wszystkie publikacje z roku 2000
-
Pokaż wszystkie publikacje z roku 1999
-
Pokaż wszystkie publikacje z roku 1998
-
Pokaż wszystkie publikacje z roku 1988
-
Pokaż wszystkie publikacje z roku 1987
-
Pokaż wszystkie publikacje z roku 1980
Publikacje z roku 2024
Pokaż wszystkie-
Comparative study of bisphenols in e-cigarette liquids: evaluating fabric phase sorptive extraction, ultrasound-assisted membrane extraction, and solid phase extraction techniques
- Paweł Kubica
- Dominika Osiecka
- Abuzar Kabir
- Natasa Kalogiouri
- Victoria F. Samanidou
To address the under-researched risk of bisphenols (BPs) in e-cigarette liquids, comprehensive studies have been conducted to propose optimum sample preparation and analysis methods. To determine twelve BPs in refill liquids for e-cigarettes, three sample preparation methods based on distinct operational and working principles were employed. These included fabric phase sorptive extraction (FPSE), ultrasound-assisted solvent extraction of porous membrane-packed samples (UASE-PMS) and solid phase extraction (SPE) utilizing molecularly imprinted polymers (MIPs) technology. Each extraction method was combined with ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLS-MS/MS). Key parameters of FPSE and UASE-PMS procedures were optimized. This optimization included selection of the FPSE membrane types, durations of extraction and the choice solvents. Comprehensive validation was conducted, demonstrating linearity across a range from 2 to 60 ng/mL for all BPs (BPS, BPA, BPF, BPE, BPB, BPC, BPZ, BPFL, BPBP, BPP, BPG and BPM). Determination coefficients were above 0.9913, signifying linear relationship. The limits of detection (LODs) were established below 0.90 ng/mL, while the limits of quantification (LOQs) were lower than 2.5 ng/mL. Notably, the method based on UASE-PMS was successfully applied to the analysis of refill liquids for e-cigarettes samples. A comparative analysis of the methods highlighted variances in precision, accuracy, and applicable aspects, such as adjustment of parameters, sample preparation time, cost, handling, availability and possible limitations. Three methods have been identified as suitable for analysing BPs in e-cigarette refill liquids, highlighting the necessity to examine their presence in these products.
-
Comparative study of numerical modelling and experimental investigation for vessel-docking operations
- Xueliang Wen
- Jianan Zhang
- Muk Chen Ong
- Aleksander Kniat
A comparative study between numerical modelling and experimental investigation is performed to validate the developed numerical method for simulating floating dock operations with a vessel on board. Both model-scale and full-scale experimental tests are performed on floating docks with a vessel on board, and the draughts using draught meters, floating positions and bending of the floating dock are measured. The present numerical method is proposed based on a quasi-static assumption during vessel-docking operations. A static analysis model is built to determine the static response of a floating dock under a specific ballast water distribution based on a hydrostatic force model and a Newton-Raphson method. A bending model is proposed to calculate the deflection of the floating dock along the longitudinal direction. Results of the mode-scale tests show that the draught measurements and the floating positions of the dock and vessel predicted using the present numerical method agree well with the corresponding experimental results. It proves the accuracy of the present numerical method for simulating vessel-docking operations. Moreover, a well-designed ballast plan enables successful de-ballasting operations on the model-scale dock, even in the event of one to three pump failures. The comparison of the deflection changes of the floating dock in the field test measurements further proves the accuracy of the present bending model. Therefore, the validated numerical model tested on both model-scale and full-scale docks provides a reliable foundation for creating digital twin of floating docks in shipyards.
-
Comparative study on fracture evolution in steel fibre and bar reinforced concrete beams using acoustic emission and digital image correlation techniques
- Shahzad Ashraf
- Magdalena Rucka
In recent decades, the demand for sustainable construction practices has increased, but raw materials such as reinforcing steel remain scarce. Therefore, steel fibres have emerged as a popular and sustainable choice in the construction industry, offering a cost-effective alternative to traditional steel bar reinforcement for both flatwork and elevated structures. The purpose of this study is therefore to compare the performance of fracture behaviour between steel fibre-reinforced concrete (SFRC) and steel bar-reinforced concrete (SBRC) beams subjected to three-point bending. The fracture process was monitored by using two non-invasive techniques: acoustic emission (AE) and digital image correlation (DIC). The damage level was identified by characterizing the parameter-based AE data such as hit rate, energy release, count, rise time, amplitude, and signal strength. DIC images were employed to visualise the crack propagation in parallel with the AE data. To further understand the fracture characteristics, the integration of 2D source localization of AE events (based on local AE fracture energies) with DIC results was investigated. The parameter-based AE results showed that SBRC beam experienced a high density of AE hits with large peak amplitude events that were accelerated during the pre-peak loading phase. The Ib-value analysis revealed that SBRC beam exhibited a higher degree of fracture magnitude during the primary crack development process than SFRC beam. Following the main cracking stage, SFRC beam demonstrated an improved post-cracking softening behavior and superior ability to arrest crack propagation compared to SBRC beam. The integration of local AE fracture energy and DIC results provided a novel approach for a better understanding of the fracture behaviour in both SFRC and SBRC beams. This study’s findings contribute to more precise monitoring of fracture evolution in SFRC and SBRC beams, ultimately improving the selection process for primary reinforcement in flatwork and elevated structures.
-
Comparison of 2D and 3D culture models in the studies of the biological response induced by unsymmetrical bisacridines in cancer cells
- Jolanta Kulesza
Multicellular tumor spheroids are a good tool for testing new anticancer drugs, including those that may target cancer stem cells (CSCs), responsible for cancer progression, metastasis, and recurrence. Therefore, following the initial evaluation of the impact of antitumor unsymmetrical bisacridines (UAs) on lung and colon cancer cells using traditional monolayer cultures, I extended my investigations and applied the spherical model. This approach aimed to uncover the cellular response induced by UAs in these cancer cells, with an additional focus on the CSC-like population. In my research, I showed that UAs affected the viability of the studied cells, as well as their spherogenic potential in 2D and 3D. Furthermore, I proved that the most promising UAs (C-2045 and C-2053) induced apoptosis in HCT116 colon and A549 lung cancer spheroids, to a similar, or even higher extent than in monolayer. Finally, I identified the population of CSC-like cells in 2D and 3D cultures of the studied cell lines by determining the levels of CD166, CD133, CD44, and EpCAM markers and I showed that selected UAs affected the CSC-like population in both cell lines, in A549 more profoundly in 3D than 2D. Thus, I have proven that UAs exhibit high antitumor properties in both 2D and 3D conditions and affect the CSC-like population, which makes them promising candidates for future therapeutic applications.
-
Comparison of 3D Point Cloud Completion Networks for High Altitude Lidar Scans of Buildings
- Marek Kulawiak
High altitude lidar scans allow for rapid acquisition of big spatial data representing entire city blocks. Unfortunately, the raw point clouds acquired by this method are largely incomplete due to object occlusions and restrictions in scanning angles and sensor resolution, which can negatively affect the obtained results. In recent years, many new solutions for 3D point cloud completion have been created and tested on various objects; however, the application of these methods to high-altitude lidar point clouds of buildings has not been properly investigated yet. In the above context, this paper presents the results of applying several state-of-the-art point cloud completion networks to various building exteriors acquired by simulated airborne laser scanning. Moreover, the output point clouds generated from partial data are compared with complete ground-truth point clouds. The performed tests show that the SeedFormer network trained on the ShapeNet-55 data set provides promising shape completion results.
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
- Wojciech Wicki
- Wiktor Burblis
- Miłosz Tkaczeń
- Jerzy Demkowicz
This paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained backbones trained for analysis of the RGB images. The project achieves an accuracy of 83.5% when extending the scope of classification to unknown objects and 94.2% when omitting unknown results. The results were compared with related projects of Zooniverse and NASA's Jet Propulsion Laboratory scientific group. From amongst the evaluated configurations, the best results and resource utilization were achieved by applying the UNet architecture with resnext_50 backbone and Adam optimizer.
-
Comparison of Doppler Effect Estimation Methods for MFSK Transmission in Multipath Hydroacoustic Channel
- Agnieszka Czapiewska
- Andrzej Łuksza
- Ryszard Studański
- Łukasz Wojewódka
- Andrzej Żak
Underwater wireless communication remains a challenging topic, particularly for applications such as wreck penetration where multipath and Doppler effects are very intense. These effects are becoming even more difficult to mitigate for fast data transmission systems that utilize wideband signals. Due to the low propagation speed of acoustic wave in the water, there is a significant difference between the Doppler shift for lower and upper frequencies of the utilized spectrum. To address these challenges, this paper describes various methods for determining the Doppler frequency shift for MFSK signals, including cross-correlation, double FFT, pilots, and additional Up-Down chirp signals. The reception quality of the transmitted data in a real environment was used as an evaluation criterion for each method. The tests were carried out in motion within the towing tank for different movement speeds of the transmitter relative to the receiver. The tank’s limited dimensions created conditions for multipath signal propagation. Under very difficult multipath signal propagation conditions, the pilots method was found to be the most effective. It gave over two times lower BER than the well-known Up-Down chirp method.
-
Comparison of heat transfer from single- and double-sided heated horizontal plate under free convection in air with constant heat flux condition
- Michał Ryms
- Krzysztof Tesch
- Witold Lewandowski
This paper presents the results of an experimental and numerical study of convective heat transfer from a newly designed double-sided heated horizontal plate in air. To ensure equal heat transfer from both surfaces, the plate was equipped with two independently supplied electric heaters and resistance thermometers on each side. Minimizing the plate's thickness reduced lateral heat loss and improved measurement accuracy. The study used the balance method for convective heat transfer analysis, and results were validated through standard numerical calculations for q = const. Additionally, results were compared with experimental literature for intermediate cases, such as a cuboid, where convection occurs from both horizontal and vertical sides. Experimental results for the plate showed a 15.5–18.0% difference from numerical ones and a 24.7–29.3% difference from average extreme cases. These findings, presented as the Nusselt-Rayleigh relationship, were positively verified by numerical calculations, confirming their reliability. This advancement enables separate studies of free convection from the upper and lower parts of horizontal plates.
-
Comparison of methods for diagnosing marine IC engines based on working medium parameters including exhaust gas specific enthalpy
- Patrycja Puzdrowska
Article points out methods currently used to diagnose marine engines in operation. The development of tools and programs for implementing these methods was pointed out. The problem of unsatisfactory measurement susceptibility of marine engines was highlighted. Three methods of parametric diagnosis are presented: measurement of in-cylinder parameters and in exhaust gas duct, numerical simulation due to computer software and calculations based on Wibe function. Unfitness states that were analyzed during tests are presented: reduced injection pressure, obstructed intake air duct and reduced compression ratio. The specific enthalpy of the exhaust gas within one engine cycle was determined as a new diagnostic parameter. As a supplement, thermograms of the engine in various states of inoperability were presented. The obtained results were compared and a series of conclusions derived from them were presented. It was evaluated that numerical simulation is an excellent tool for planning experimental studies. Tests on the engine in operation were found to be the most diagnostically reliable.
-
Comparison of Tire Rolling Resistance Measuring Methods for Different Surfaces
- Jerzy Ejsmont
- Grzegorz Ronowski
- Lisa Ydrefors
- Wojciech Owczarzak
- Sławomir Sommer
- Beata Świeczko-Żurek
The rolling resistance of car tires is one of the most important parameters characterizing tires today. This resistance has a very significant contribution to the energy consumption of wheeled vehicles. The climate crisis has forced tire and car manufacturers to place great emphasis on the environmental impact of their products. Paradoxically, the development of electric vehicles has led to an even greater importance of rolling resistance, because in electric vehicles, a large part of the influence of grade resistance and inertial resistance has been eliminated due to re-generative braking, which resulted in rolling resistance and air resistance remain as the most important factors. What is more, electric and hybrid vehicles are usually heavier, so the rolling resistance is increased accordingly. To optimize tires for rolling resistance, representative test methods must exist. Unfortunately, the current standards for measuring rolling resistance assume that tests are carried out in conditions that are far from real road conditions. This article compares the results of rolling resistance tests conducted in road conditions with the results of laboratory tests conducted on roadwheel facilities. The overview of results shows that the results of tests conducted in accordance with ISO and SAE standards on steel drums are very poorly correlated with more objective results of road tests. Significant differences occur both in the Coefficients of Rolling Resistance (CRR) and in the tire ranking. Only covering the drums with replicas of road surfaces leads to a significant improvement in the results obtained. For investigations of rolling resistance in non-steady-state conditions, the flat track testing machine (TTF), equipped with asphalt cassettes, is shown to provide measurement data in agreement with the road test data.
-
Completely entangled subspaces of entanglement depth k
- Maciej Demianowicz
- Kajetan Vogtt
- Remigiusz Augusiak
We introduce a class of entangled subspaces: completely entangled subspaces of entanglement depth k (k-CESs). These are subspaces of multipartite Hilbert spaces containing only pure states with an entanglement depth of at least k. We present an efficient construction of k-CESs of any achievable dimensionality in any multipartite scenario. Further, we discuss the relation between these subspaces and unextendible product bases (UPBs). In particular, we establish that there is a nontrivial bound on the cardinality of a UPB whose orthocomplement is a k-CES. Further, we discuss the existence of such UPBs for qubit systems.
-
Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review
- Roberto Castro Munoz
Today, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials are being used in membrane separation either in self-standing membranes or composites with polymer phases. For instance, pervaporation (PV), as a highly selective technology for liquid separation, benefits from using 2D materials to selectively transport water or other solvent molecules. Therefore, this review paper offers an interesting update in revising the ongoing progress of PV membranes using 2D materials in several applications, including solvent purification (the removal of water from organic systems), organics removal (the removal of organic molecules diluted in water systems), and desalination (selective water transport from seawater). In general, recent reports from the past 3 years have been discussed and analyzed. Attention has been devoted to the proposed strategies and fabrication of membranes for the inclusion of 2D materials into polymer phases. Finally, the future trends and current research gaps are declared for the scientists in the field.
-
Comprehensive evaluation of physical properties and carbon dioxide capacities of new 2-(butylamino)ethanol-based deep eutectic solvents
- Bartosz Nowosielski
- Marzena Jamrógiewicz
- Iwona Cichowska-Kopczyńska
- Dorota Warmińska
The aim of this research was to assess the impact of the components of alkanolamine deep eutectic solvents (DESs) on the physical properties of those DESs and their carbon dioxide capacity. To achieve this goal, novel deep eutectic solvents were synthesized by using 2-(butylamino)ethanol (BAE) as the hydrogen bond donor (HBD), along with tetrabutylammonium bromide TBAB), tetrabutylammonium chloride (TBAC), or tetraethy- lammonium chloride (TEAC) as the hydrogen bond acceptors (HBA) at various molar ratios (1:6, 1:8, and 1:10). To confirm the presence of hydrogen bond interactions between the components Fourier Transform Infrared Spectroscopy measurements were conducted. Furthermore, thermal properties, including melting points and thermal stability, of these deep eutectic solvents as well as key physical properties, such as density, viscosity, refractive index, and sound velocity, within the temperature range of 293.15–333.15 K and at a pressure of 0.1 MPa were examined. The effect of the molar ratio of HBA to HBD, the type of anion, and the length of the alkyl chain were studied and analysed in regard to physicochemical properties. In this work, the solubility of carbon dioxide in DESs derived from 2-(butylamino)ethanol, 3-aminopropan-1-ol (AP), and 2-(methylamino)ethanol (MAE) was measured. The highest CO 2 capacity was found for TEAC:MAE 1:10 DES characterized by the shortest alkyl chain length in both HBA and HBD molecules, the highest amine content, and the lowest viscosity. Additionally, the effect of water addition on carbon dioxide solubility was explored. The results showed that the influence of water on CO 2 solubility varies with the type of DES. In general, this work highlighted that DESs can serve as effective media for carbon dioxide capture, and their performance can be tailored by changing the type of hydrogen bond acceptor or donor, their molar ratio and by the addition of water.
-
Comprehensive exploration of technological tensioning effects in welded thin plate girders: an in-depth investigation
- Hassanein I. Khalaf
- D. Chodorowska
- Raheem Al-Sabur
- Andrzej Kubit
- Wojciech Macek
Thin-walled plate girders are widely used in structures and construction due to their effectiveness in transferring loads. The permanent deformations of the girder lead to a lack of stability, which necessarily leads to its replacement. Replacing permanently deformed thin-walled load-bearing structures requires large financial outlays. Technological prestressing is one of the most effective methods for studying and treating permanent deflections in girder elements. This study looks at the defection of welded thin-plate S235JR steel girders, examining how technological tensioning effects interact with different loading conditions. Four girders, A2 (welded in bottom caps), A3 (welded in two side caps), and A4 (welded in two side caps and bottom caps), as well as the prestressed B2 girder, which has two welded side caps, were subjected to a bend test. The girders were subjected to a load P (20, 40, 60, 80 and 95) kN. All points were examined during the 95 min of cooling time. For technological compression, the results showed that there is a convergence between the analytical solution and the experimental results, as the most significant deviation achieved in the analysis was 5.21 mm compared to 6 mm experimentally. When the girder is loaded with the force P = 50 N, the maximum deflection achieved at girder A4 is 4 mm, compared with 1mm at girder A2. In prestressed girder B, the deflections that were reached were 2.50 mm, 3.50 mm, and 3.52 mm in the analytical, experimental, and FE numerical models, respectively. The tensions that were reached were 36.96 MPa, 44.28 MPa, and 27.93 MPa.
-
Computational analysis of power-law fluids for convective heat transfer in permeable enclosures using Darcy effects
- Maryam Rehman
- Muhammad Bilal Hafeez
- Marek Krawczuk
Natural convection is a complex environmental phenomenon that typically occurs in engineering settings in porous structures. Shear thinning or shear thickening fuids are characteristics of power-law fuids, which are non-Newtonian in nature and fnd wide-ranging uses in various industrial processes. Non-Newtonian fuid fow in porous media is a difcult problem with important consequences for energy systems and heat transfer. In this paper, convective heat transmission in permeable enclosures will be thoroughly examined. The main goal is to comprehend the intricate interaction between the buoyancyinduced convection intensity, the porosity of the casing, and the fuid’s power-law rheology as indicated by the Rayleigh number. The objective is to comprehend the underlying mechanisms and identify the ideal conditions for improving heat transfer processes.The problem’s governing equations for a scientifc investigation are predicated on the concepts of heat transport and fuid dynamics. The fuid fow and thermal behavior are represented using the energy equation, the Boussinesq approximation, and the Navier–Stokes equations. The continuity equation in a porous media represents the conservation of mass. Finite Element Analysis is the numerical method that is suggested for this challenging topic since it enables a comprehensive examination of the situation. The results of the investigation support several important conclusions. The power-law index directly impacts heat transmission patterns. A higher Rayleigh number indicates increased buoyancyinduced convection, which increases the heat transfer rates inside the shell. The porosity of the medium signifcantly afects temperature gradients and fow distribution, and it is most noticeable when permeability is present. The fndings show how, in the context of porous media, these parameters have complicated relationships with one another
-
Computational analysis of substituent effects on proton affinity and gas-phase basicity of TEMPO derivatives and their hydrogen bonding interactions with water molecules
- Abolfazl Shiroudi
- Maciej Śmiechowski
- Jacek Czub
- Mohamed A. Abdel-Rahman
The study investigates the molecular structure of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives in the gas phase using B3LYP and M06-2X functional methods. Intermolecular interactions are analyzed using natural bond orbital (NBO) and atoms in molecules (AIM) techniques. NO2-substituted TEMPO displays high reactivity, less stability, and softer properties. The study reveals that the stability of TEMPO derivatives is mainly influenced by LP(e) → σ∗ electronic delocalization effects, with the highest stabilization observed on the oxygen atom of the nitroxide moiety. This work also considers electron density, atomic charges, and energetic and thermodynamic properties of the studied NO radicals, and their relative stability. The proton affinity and gas-phase basicity of the studied compounds were computed at T = 298 K for O-protonation and N-protonation, respectively. The studied DFT method calculations show that O-protonation is more stable than N-protonation, with an energy difference of 16.64–20.77 kcal/mol (22.80–25.68 kcal/mol) at the B3LYP (M06-2X) method. The AIM analysis reveals that the N–O…H interaction in H2O complexes has the most favorable hydrogen bond energy computed at bond critical points (3, − 1), and the planar configurations of TEMPO derivatives exhibit the highest EHB values. This indicates stronger hydrogen bonding interactions between the N–O group and water molecules.
-
Computational Approach towards Repetitive Design Tasks: The Case Study of Parking Lot Automated Design
- Jan Cudzik
- Michał Nessel
The study aims to develop and assess an algorithm for efficiently generating parking spot layouts within predefined area outlines. The algorithm is an attempt to streamline the decisionmaking process by producing different design variants and optimizing the utilization of available space. The algorithm’s primary objective is to streamline decision-making by generating diverse design variants while optimizing the use of available space, with a distinct focus on mitigating environmental impact and fostering ecological well-being. Researchers conduct thorough tests on the algorithm across various outlines, resulting in multiple layout options for each scenario. They analyzed five representative parking locations and compare the algorithm’s results with the existing parking spot layouts. Throughout the evaluation process, they consider quantitative and qualitative data, considering the complexities of communication solutions within each context. The study findings indicate that the algorithm demonstrates comparable or superior performance to existing solutions. Overall, the study highlights the promising potential of algorithmic design approaches in the context of parking lot automated design. Achieving a balance between innovative designs and user-friendly layouts is crucial, and this is achievable by conducting comprehensive analyses that consider various factors. The consistent findings underscore the algorithm’s potential to significantly contribute to sustainable design practices in parking lot layouts, highlighting decreased environmental strain, efficient land use, and creating urban spaces that prioritize ecological benefits. Furthermore, seamlessly integrating algorithmic solutions with existing communication systems is paramount to ensure practical applicability in real-world scenarios. This integration will enable more effective and practical implementation of the algorithm’s outputs in actual parking lot design projects.
-
Computational Bar Size Optimization of Single Layer Dome Structures Considering Axial Stress and Shape Disturbance
- Ahmed Manguri
- Najmadeen Saeed
- Farzin Kazemi
- Neda Asgarkhani
- Marcin Szczepański
- Robert Jankowski
A computational method is proposed in this paper to minimize the material usage in the construction of modern spatial frame structures by prestressing a minimal number of members. The computational optimization is conducted in two steps. Firstly, a numerical model of a single-layer dome structure is used to minimize the cross-sectional area through several iterations. Different assumed ratios (r) ranging from 0.95 to 0.75 are multiplied by the designed cross-sectional area, and the optimal actual ratio (R) is determined through multiple steps using MATLAB. The selection of the optimum ratio is based on ensuring structural stability and considering various constraints. Secondly, a computational optimization is performed using the fmincon function in MATLAB, which employs an interior-point optimization algorithm to search for the minimum summation of the function. The algorithm is designed to exclude actuators with negligible actuation, thereby minimizing the number of actuators. Constraints are set on the stress of all members and the nodal displacements to maintain the desirable shape of the optimized structure. The obtained results demonstrate that the cross-sectional area of the numerical dome structure can be reduced by up to 18% by prestressing only nine members. The validity of the results is confirmed by comparing them with those obtained from MATLAB and SAP2000 software.
-
Computational modelling of historic masonry railroad arch bridges
- Bartosz Sobczyk
- Łukasz Pyrzowski
- Mikołaj Miśkiewicz
The problems encountered during the analyzes of structural response of historic masonry railroad arch bridges are described in this paper. The attention is mainly focused on the stiffness of the masonry arches, their strengths and appropriate estimation of railroad load intensity. Issues related to computational modelling of two, existing, almost 130 years old masonry arch railroad bridges are presented in this context. The main properties and results of detailed inspection of the structures are shown. Computational models that were created in the finite element method environment in order to efficiently describe the responses of the bridges under typical loading conditions and estimate their load carrying abilities are presented. The outcomes of several nonlinear static analyses that were conducted for this purpose are discussed. What is more the results of finite element analyses are reviewed against the inspected bridge condition and final conclusions are formulated on that basis. All the analyses allowed to find the possible causes of the deterioration of the bridges condition.
-
Computational Study of Molecular Interactions in ZnCl2(urea)2 Crystals as Precursors for Deep Eutectic Solvents
- Adrian Malinowski
- Maciej Śmiechowski
Deep eutectic solvents (DESs) are now enjoying an increased scientific interest due to their interesting properties and growing range of possible applications. Computational methods are at the forefront of deciphering their structure and dynamics. Type IV DESs, composed of metal chloride and a hydrogen bond donor, are among the less studied systems when it comes to their understanding at a molecular level. An important example of such systems is the zinc chloride–urea DES, already used in chemical synthesis, among others. In this paper, the ZnCl2(urea)2 crystal is studied from the point of view of its structure, infrared spectrum, and intermolecular interactions using periodic density functional theory and non-covalent interactions analysis. The two main structural motifs found in the crystal are a strongly hydrogen-bonded urea dimer assisted by chloride anions and a tetrahedral Zn(II) coordination complex. The crystal is composed of two interlocking parallel planes connected via the zinc cations. The infrared spectrum and bond lengths suggest a partially covalent character of the Zn–Cl bonds. The present analysis has far-reaching implications for the liquid ZnCl2–urea DES, explaining its fluidity, expected microstructure, and low conductivity, among others.